aboutsummaryrefslogtreecommitdiffstats
path: root/meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch
diff options
context:
space:
mode:
Diffstat (limited to 'meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch')
-rw-r--r--meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch1401
1 files changed, 1401 insertions, 0 deletions
diff --git a/meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch b/meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch
new file mode 100644
index 0000000000..423cd56528
--- /dev/null
+++ b/meta-oe/recipes-devtools/gcc/gcc-4.5/linaro/gcc-4.5-linaro-r99306.patch
@@ -0,0 +1,1401 @@
+2010-07-10 Sandra Loosemore <sandra@codesourcery.com>
+
+ Backport from mainline:
+
+ 2010-05-08 Sandra Loosemore <sandra@codesourcery.com>
+
+ PR middle-end/28685
+
+ gcc/
+ * tree-ssa-reassoc.c (eliminate_redundant_comparison): New function.
+ (optimize_ops_list): Call it.
+
+ gcc/testsuite/
+ * gcc.dg/pr28685-1.c: New file.
+
+ 2010-06-08 Sandra Loosemore <sandra@codesourcery.com>
+
+ PR tree-optimization/39874
+ PR middle-end/28685
+
+ gcc/
+ * gimple.h (maybe_fold_and_comparisons, maybe_fold_or_comparisons):
+ Declare.
+ * gimple-fold.c (canonicalize_bool, same_bool_comparison_p,
+ same_bool_result_p): New.
+ (and_var_with_comparison, and_var_with_comparison_1,
+ and_comparisons_1, and_comparisons, maybe_fold_and_comparisons): New.
+ (or_var_with_comparison, or_var_with_comparison_1,
+ or_comparisons_1, or_comparisons, maybe_fold_or_comparisons): New.
+ * tree-ssa-reassoc.c (eliminate_redundant_comparison): Use
+ maybe_fold_and_comparisons or maybe_fold_or_comparisons instead
+ of combine_comparisons.
+ * tree-ssa-ifcombine.c (ifcombine_ifandif, ifcombine_iforif): Likewise.
+
+ gcc/testsuite/
+ * gcc.dg/pr39874.c: New file.
+
+ 2010-07-10 Yao Qi <yao@codesourcery.com>
+
+ Merge from Sourcery G++ 4.4:
+
+=== modified file 'gcc/gimple.h'
+--- old/gcc/gimple.h 2010-04-02 18:54:46 +0000
++++ new/gcc/gimple.h 2010-07-30 13:21:51 +0000
+@@ -4743,4 +4743,9 @@
+
+ extern void dump_gimple_statistics (void);
+
++extern tree maybe_fold_and_comparisons (enum tree_code, tree, tree,
++ enum tree_code, tree, tree);
++extern tree maybe_fold_or_comparisons (enum tree_code, tree, tree,
++ enum tree_code, tree, tree);
++
+ #endif /* GCC_GIMPLE_H */
+
+=== added file 'gcc/testsuite/gcc.dg/pr28685-1.c'
+--- old/gcc/testsuite/gcc.dg/pr28685-1.c 1970-01-01 00:00:00 +0000
++++ new/gcc/testsuite/gcc.dg/pr28685-1.c 2010-07-30 13:21:51 +0000
+@@ -0,0 +1,50 @@
++/* { dg-do compile } */
++/* { dg-options "-O2 -fdump-tree-optimized" } */
++
++/* Should produce <=. */
++int test1 (int a, int b)
++{
++ return (a < b || a == b);
++}
++
++/* Should produce <=. */
++int test2 (int a, int b)
++{
++ int lt = a < b;
++ int eq = a == b;
++
++ return (lt || eq);
++}
++
++/* Should produce <= (just deleting redundant test). */
++int test3 (int a, int b)
++{
++ int lt = a <= b;
++ int eq = a == b;
++
++ return (lt || eq);
++}
++
++/* Should produce <= (operands reversed to test the swap logic). */
++int test4 (int a, int b)
++{
++ int lt = a < b;
++ int eq = b == a;
++
++ return (lt || eq);
++}
++
++/* Should produce constant 0. */
++int test5 (int a, int b)
++{
++ int lt = a < b;
++ int eq = a == b;
++
++ return (lt && eq);
++}
++
++/* { dg-final { scan-tree-dump-times " <= " 4 "optimized" } } */
++/* { dg-final { scan-tree-dump-times "return 0" 1 "optimized" } } */
++/* { dg-final { scan-tree-dump-not " < " "optimized" } } */
++/* { dg-final { scan-tree-dump-not " == " "optimized" } } */
++/* { dg-final { cleanup-tree-dump "optimized" } } */
+
+=== added file 'gcc/testsuite/gcc.dg/pr39874.c'
+--- old/gcc/testsuite/gcc.dg/pr39874.c 1970-01-01 00:00:00 +0000
++++ new/gcc/testsuite/gcc.dg/pr39874.c 2010-07-30 13:21:51 +0000
+@@ -0,0 +1,29 @@
++/* { dg-do compile } */
++/* { dg-options "-O2 -fdump-tree-optimized" } */
++
++extern void func();
++
++void test1(char *signature)
++{
++ char ch = signature[0];
++ if (ch == 15 || ch == 3)
++ {
++ if (ch == 15) func();
++ }
++}
++
++
++void test2(char *signature)
++{
++ char ch = signature[0];
++ if (ch == 15 || ch == 3)
++ {
++ if (ch > 14) func();
++ }
++}
++
++/* { dg-final { scan-tree-dump-times " == 15" 2 "optimized" } } */
++/* { dg-final { scan-tree-dump-not " == 3" "optimized" } } */
++/* { dg-final { cleanup-tree-dump "optimized" } } */
++
++
+
+=== modified file 'gcc/tree-ssa-ccp.c'
+--- old/gcc/tree-ssa-ccp.c 2010-04-02 15:50:04 +0000
++++ new/gcc/tree-ssa-ccp.c 2010-07-30 13:21:51 +0000
+@@ -3176,6 +3176,1056 @@
+ return changed;
+ }
+
++/* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE
++ if EXPR is null or we don't know how.
++ If non-null, the result always has boolean type. */
++
++static tree
++canonicalize_bool (tree expr, bool invert)
++{
++ if (!expr)
++ return NULL_TREE;
++ else if (invert)
++ {
++ if (integer_nonzerop (expr))
++ return boolean_false_node;
++ else if (integer_zerop (expr))
++ return boolean_true_node;
++ else if (TREE_CODE (expr) == SSA_NAME)
++ return fold_build2 (EQ_EXPR, boolean_type_node, expr,
++ build_int_cst (TREE_TYPE (expr), 0));
++ else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
++ return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false),
++ boolean_type_node,
++ TREE_OPERAND (expr, 0),
++ TREE_OPERAND (expr, 1));
++ else
++ return NULL_TREE;
++ }
++ else
++ {
++ if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
++ return expr;
++ if (integer_nonzerop (expr))
++ return boolean_true_node;
++ else if (integer_zerop (expr))
++ return boolean_false_node;
++ else if (TREE_CODE (expr) == SSA_NAME)
++ return fold_build2 (NE_EXPR, boolean_type_node, expr,
++ build_int_cst (TREE_TYPE (expr), 0));
++ else if (TREE_CODE_CLASS (TREE_CODE (expr)) == tcc_comparison)
++ return fold_build2 (TREE_CODE (expr),
++ boolean_type_node,
++ TREE_OPERAND (expr, 0),
++ TREE_OPERAND (expr, 1));
++ else
++ return NULL_TREE;
++ }
++}
++
++/* Check to see if a boolean expression EXPR is logically equivalent to the
++ comparison (OP1 CODE OP2). Check for various identities involving
++ SSA_NAMEs. */
++
++static bool
++same_bool_comparison_p (const_tree expr, enum tree_code code,
++ const_tree op1, const_tree op2)
++{
++ gimple s;
++
++ /* The obvious case. */
++ if (TREE_CODE (expr) == code
++ && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0)
++ && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0))
++ return true;
++
++ /* Check for comparing (name, name != 0) and the case where expr
++ is an SSA_NAME with a definition matching the comparison. */
++ if (TREE_CODE (expr) == SSA_NAME
++ && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE)
++ {
++ if (operand_equal_p (expr, op1, 0))
++ return ((code == NE_EXPR && integer_zerop (op2))
++ || (code == EQ_EXPR && integer_nonzerop (op2)));
++ s = SSA_NAME_DEF_STMT (expr);
++ if (is_gimple_assign (s)
++ && gimple_assign_rhs_code (s) == code
++ && operand_equal_p (gimple_assign_rhs1 (s), op1, 0)
++ && operand_equal_p (gimple_assign_rhs2 (s), op2, 0))
++ return true;
++ }
++
++ /* If op1 is of the form (name != 0) or (name == 0), and the definition
++ of name is a comparison, recurse. */
++ if (TREE_CODE (op1) == SSA_NAME
++ && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE)
++ {
++ s = SSA_NAME_DEF_STMT (op1);
++ if (is_gimple_assign (s)
++ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison)
++ {
++ enum tree_code c = gimple_assign_rhs_code (s);
++ if ((c == NE_EXPR && integer_zerop (op2))
++ || (c == EQ_EXPR && integer_nonzerop (op2)))
++ return same_bool_comparison_p (expr, c,
++ gimple_assign_rhs1 (s),
++ gimple_assign_rhs2 (s));
++ if ((c == EQ_EXPR && integer_zerop (op2))
++ || (c == NE_EXPR && integer_nonzerop (op2)))
++ return same_bool_comparison_p (expr,
++ invert_tree_comparison (c, false),
++ gimple_assign_rhs1 (s),
++ gimple_assign_rhs2 (s));
++ }
++ }
++ return false;
++}
++
++/* Check to see if two boolean expressions OP1 and OP2 are logically
++ equivalent. */
++
++static bool
++same_bool_result_p (const_tree op1, const_tree op2)
++{
++ /* Simple cases first. */
++ if (operand_equal_p (op1, op2, 0))
++ return true;
++
++ /* Check the cases where at least one of the operands is a comparison.
++ These are a bit smarter than operand_equal_p in that they apply some
++ identifies on SSA_NAMEs. */
++ if (TREE_CODE_CLASS (TREE_CODE (op2)) == tcc_comparison
++ && same_bool_comparison_p (op1, TREE_CODE (op2),
++ TREE_OPERAND (op2, 0),
++ TREE_OPERAND (op2, 1)))
++ return true;
++ if (TREE_CODE_CLASS (TREE_CODE (op1)) == tcc_comparison
++ && same_bool_comparison_p (op2, TREE_CODE (op1),
++ TREE_OPERAND (op1, 0),
++ TREE_OPERAND (op1, 1)))
++ return true;
++
++ /* Default case. */
++ return false;
++}
++
++/* Forward declarations for some mutually recursive functions. */
++
++static tree
++and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
++ enum tree_code code2, tree op2a, tree op2b);
++static tree
++and_var_with_comparison (tree var, bool invert,
++ enum tree_code code2, tree op2a, tree op2b);
++static tree
++and_var_with_comparison_1 (gimple stmt,
++ enum tree_code code2, tree op2a, tree op2b);
++static tree
++or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
++ enum tree_code code2, tree op2a, tree op2b);
++static tree
++or_var_with_comparison (tree var, bool invert,
++ enum tree_code code2, tree op2a, tree op2b);
++static tree
++or_var_with_comparison_1 (gimple stmt,
++ enum tree_code code2, tree op2a, tree op2b);
++
++/* Helper function for and_comparisons_1: try to simplify the AND of the
++ ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
++ If INVERT is true, invert the value of the VAR before doing the AND.
++ Return NULL_EXPR if we can't simplify this to a single expression. */
++
++static tree
++and_var_with_comparison (tree var, bool invert,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ tree t;
++ gimple stmt = SSA_NAME_DEF_STMT (var);
++
++ /* We can only deal with variables whose definitions are assignments. */
++ if (!is_gimple_assign (stmt))
++ return NULL_TREE;
++
++ /* If we have an inverted comparison, apply DeMorgan's law and rewrite
++ !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b))
++ Then we only have to consider the simpler non-inverted cases. */
++ if (invert)
++ t = or_var_with_comparison_1 (stmt,
++ invert_tree_comparison (code2, false),
++ op2a, op2b);
++ else
++ t = and_var_with_comparison_1 (stmt, code2, op2a, op2b);
++ return canonicalize_bool (t, invert);
++}
++
++/* Try to simplify the AND of the ssa variable defined by the assignment
++ STMT with the comparison specified by (OP2A CODE2 OP2B).
++ Return NULL_EXPR if we can't simplify this to a single expression. */
++
++static tree
++and_var_with_comparison_1 (gimple stmt,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ tree var = gimple_assign_lhs (stmt);
++ tree true_test_var = NULL_TREE;
++ tree false_test_var = NULL_TREE;
++ enum tree_code innercode = gimple_assign_rhs_code (stmt);
++
++ /* Check for identities like (var AND (var == 0)) => false. */
++ if (TREE_CODE (op2a) == SSA_NAME
++ && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
++ {
++ if ((code2 == NE_EXPR && integer_zerop (op2b))
++ || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
++ {
++ true_test_var = op2a;
++ if (var == true_test_var)
++ return var;
++ }
++ else if ((code2 == EQ_EXPR && integer_zerop (op2b))
++ || (code2 == NE_EXPR && integer_nonzerop (op2b)))
++ {
++ false_test_var = op2a;
++ if (var == false_test_var)
++ return boolean_false_node;
++ }
++ }
++
++ /* If the definition is a comparison, recurse on it. */
++ if (TREE_CODE_CLASS (innercode) == tcc_comparison)
++ {
++ tree t = and_comparisons_1 (innercode,
++ gimple_assign_rhs1 (stmt),
++ gimple_assign_rhs2 (stmt),
++ code2,
++ op2a,
++ op2b);
++ if (t)
++ return t;
++ }
++
++ /* If the definition is an AND or OR expression, we may be able to
++ simplify by reassociating. */
++ if (innercode == TRUTH_AND_EXPR
++ || innercode == TRUTH_OR_EXPR
++ || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
++ && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)))
++ {
++ tree inner1 = gimple_assign_rhs1 (stmt);
++ tree inner2 = gimple_assign_rhs2 (stmt);
++ gimple s;
++ tree t;
++ tree partial = NULL_TREE;
++ bool is_and = (innercode == TRUTH_AND_EXPR || innercode == BIT_AND_EXPR);
++
++ /* Check for boolean identities that don't require recursive examination
++ of inner1/inner2:
++ inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var
++ inner1 AND (inner1 OR inner2) => inner1
++ !inner1 AND (inner1 AND inner2) => false
++ !inner1 AND (inner1 OR inner2) => !inner1 AND inner2
++ Likewise for similar cases involving inner2. */
++ if (inner1 == true_test_var)
++ return (is_and ? var : inner1);
++ else if (inner2 == true_test_var)
++ return (is_and ? var : inner2);
++ else if (inner1 == false_test_var)
++ return (is_and
++ ? boolean_false_node
++ : and_var_with_comparison (inner2, false, code2, op2a, op2b));
++ else if (inner2 == false_test_var)
++ return (is_and
++ ? boolean_false_node
++ : and_var_with_comparison (inner1, false, code2, op2a, op2b));
++
++ /* Next, redistribute/reassociate the AND across the inner tests.
++ Compute the first partial result, (inner1 AND (op2a code op2b)) */
++ if (TREE_CODE (inner1) == SSA_NAME
++ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
++ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
++ && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
++ gimple_assign_rhs1 (s),
++ gimple_assign_rhs2 (s),
++ code2, op2a, op2b)))
++ {
++ /* Handle the AND case, where we are reassociating:
++ (inner1 AND inner2) AND (op2a code2 op2b)
++ => (t AND inner2)
++ If the partial result t is a constant, we win. Otherwise
++ continue on to try reassociating with the other inner test. */
++ if (is_and)
++ {
++ if (integer_onep (t))
++ return inner2;
++ else if (integer_zerop (t))
++ return boolean_false_node;
++ }
++
++ /* Handle the OR case, where we are redistributing:
++ (inner1 OR inner2) AND (op2a code2 op2b)
++ => (t OR (inner2 AND (op2a code2 op2b))) */
++ else
++ {
++ if (integer_onep (t))
++ return boolean_true_node;
++ else
++ /* Save partial result for later. */
++ partial = t;
++ }
++ }
++
++ /* Compute the second partial result, (inner2 AND (op2a code op2b)) */
++ if (TREE_CODE (inner2) == SSA_NAME
++ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
++ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
++ && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s),
++ gimple_assign_rhs1 (s),
++ gimple_assign_rhs2 (s),
++ code2, op2a, op2b)))
++ {
++ /* Handle the AND case, where we are reassociating:
++ (inner1 AND inner2) AND (op2a code2 op2b)
++ => (inner1 AND t) */
++ if (is_and)
++ {
++ if (integer_onep (t))
++ return inner1;
++ else if (integer_zerop (t))
++ return boolean_false_node;
++ }
++
++ /* Handle the OR case. where we are redistributing:
++ (inner1 OR inner2) AND (op2a code2 op2b)
++ => (t OR (inner1 AND (op2a code2 op2b)))
++ => (t OR partial) */
++ else
++ {
++ if (integer_onep (t))
++ return boolean_true_node;
++ else if (partial)
++ {
++ /* We already got a simplification for the other
++ operand to the redistributed OR expression. The
++ interesting case is when at least one is false.
++ Or, if both are the same, we can apply the identity
++ (x OR x) == x. */
++ if (integer_zerop (partial))
++ return t;
++ else if (integer_zerop (t))
++ return partial;
++ else if (same_bool_result_p (t, partial))
++ return t;
++ }
++ }
++ }
++ }
++ return NULL_TREE;
++}
++
++/* Try to simplify the AND of two comparisons defined by
++ (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
++ If this can be done without constructing an intermediate value,
++ return the resulting tree; otherwise NULL_TREE is returned.
++ This function is deliberately asymmetric as it recurses on SSA_DEFs
++ in the first comparison but not the second. */
++
++static tree
++and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ /* First check for ((x CODE1 y) AND (x CODE2 y)). */
++ if (operand_equal_p (op1a, op2a, 0)
++ && operand_equal_p (op1b, op2b, 0))
++ {
++ tree t = combine_comparisons (UNKNOWN_LOCATION,
++ TRUTH_ANDIF_EXPR, code1, code2,
++ boolean_type_node, op1a, op1b);
++ if (t)
++ return t;
++ }
++
++ /* Likewise the swapped case of the above. */
++ if (operand_equal_p (op1a, op2b, 0)
++ && operand_equal_p (op1b, op2a, 0))
++ {
++ tree t = combine_comparisons (UNKNOWN_LOCATION,
++ TRUTH_ANDIF_EXPR, code1,
++ swap_tree_comparison (code2),
++ boolean_type_node, op1a, op1b);
++ if (t)
++ return t;
++ }
++
++ /* If both comparisons are of the same value against constants, we might
++ be able to merge them. */
++ if (operand_equal_p (op1a, op2a, 0)
++ && TREE_CODE (op1b) == INTEGER_CST
++ && TREE_CODE (op2b) == INTEGER_CST)
++ {
++ int cmp = tree_int_cst_compare (op1b, op2b);
++
++ /* If we have (op1a == op1b), we should either be able to
++ return that or FALSE, depending on whether the constant op1b
++ also satisfies the other comparison against op2b. */
++ if (code1 == EQ_EXPR)
++ {
++ bool done = true;
++ bool val;
++ switch (code2)
++ {
++ case EQ_EXPR: val = (cmp == 0); break;
++ case NE_EXPR: val = (cmp != 0); break;
++ case LT_EXPR: val = (cmp < 0); break;
++ case GT_EXPR: val = (cmp > 0); break;
++ case LE_EXPR: val = (cmp <= 0); break;
++ case GE_EXPR: val = (cmp >= 0); break;
++ default: done = false;
++ }
++ if (done)
++ {
++ if (val)
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ else
++ return boolean_false_node;
++ }
++ }
++ /* Likewise if the second comparison is an == comparison. */
++ else if (code2 == EQ_EXPR)
++ {
++ bool done = true;
++ bool val;
++ switch (code1)
++ {
++ case EQ_EXPR: val = (cmp == 0); break;
++ case NE_EXPR: val = (cmp != 0); break;
++ case LT_EXPR: val = (cmp > 0); break;
++ case GT_EXPR: val = (cmp < 0); break;
++ case LE_EXPR: val = (cmp >= 0); break;
++ case GE_EXPR: val = (cmp <= 0); break;
++ default: done = false;
++ }
++ if (done)
++ {
++ if (val)
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ else
++ return boolean_false_node;
++ }
++ }
++
++ /* Same business with inequality tests. */
++ else if (code1 == NE_EXPR)
++ {
++ bool val;
++ switch (code2)
++ {
++ case EQ_EXPR: val = (cmp != 0); break;
++ case NE_EXPR: val = (cmp == 0); break;
++ case LT_EXPR: val = (cmp >= 0); break;
++ case GT_EXPR: val = (cmp <= 0); break;
++ case LE_EXPR: val = (cmp > 0); break;
++ case GE_EXPR: val = (cmp < 0); break;
++ default:
++ val = false;
++ }
++ if (val)
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ }
++ else if (code2 == NE_EXPR)
++ {
++ bool val;
++ switch (code1)
++ {
++ case EQ_EXPR: val = (cmp == 0); break;
++ case NE_EXPR: val = (cmp != 0); break;
++ case LT_EXPR: val = (cmp <= 0); break;
++ case GT_EXPR: val = (cmp >= 0); break;
++ case LE_EXPR: val = (cmp < 0); break;
++ case GE_EXPR: val = (cmp > 0); break;
++ default:
++ val = false;
++ }
++ if (val)
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ }
++
++ /* Chose the more restrictive of two < or <= comparisons. */
++ else if ((code1 == LT_EXPR || code1 == LE_EXPR)
++ && (code2 == LT_EXPR || code2 == LE_EXPR))
++ {
++ if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ else
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ }
++
++ /* Likewise chose the more restrictive of two > or >= comparisons. */
++ else if ((code1 == GT_EXPR || code1 == GE_EXPR)
++ && (code2 == GT_EXPR || code2 == GE_EXPR))
++ {
++ if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ else
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ }
++
++ /* Check for singleton ranges. */
++ else if (cmp == 0
++ && ((code1 == LE_EXPR && code2 == GE_EXPR)
++ || (code1 == GE_EXPR && code2 == LE_EXPR)))
++ return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b);
++
++ /* Check for disjoint ranges. */
++ else if (cmp <= 0
++ && (code1 == LT_EXPR || code1 == LE_EXPR)
++ && (code2 == GT_EXPR || code2 == GE_EXPR))
++ return boolean_false_node;
++ else if (cmp >= 0
++ && (code1 == GT_EXPR || code1 == GE_EXPR)
++ && (code2 == LT_EXPR || code2 == LE_EXPR))
++ return boolean_false_node;
++ }
++
++ /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
++ NAME's definition is a truth value. See if there are any simplifications
++ that can be done against the NAME's definition. */
++ if (TREE_CODE (op1a) == SSA_NAME
++ && (code1 == NE_EXPR || code1 == EQ_EXPR)
++ && (integer_zerop (op1b) || integer_onep (op1b)))
++ {
++ bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
++ || (code1 == NE_EXPR && integer_onep (op1b)));
++ gimple stmt = SSA_NAME_DEF_STMT (op1a);
++ switch (gimple_code (stmt))
++ {
++ case GIMPLE_ASSIGN:
++ /* Try to simplify by copy-propagating the definition. */
++ return and_var_with_comparison (op1a, invert, code2, op2a, op2b);
++
++ case GIMPLE_PHI:
++ /* If every argument to the PHI produces the same result when
++ ANDed with the second comparison, we win.
++ Do not do this unless the type is bool since we need a bool
++ result here anyway. */
++ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
++ {
++ tree result = NULL_TREE;
++ unsigned i;
++ for (i = 0; i < gimple_phi_num_args (stmt); i++)
++ {
++ tree arg = gimple_phi_arg_def (stmt, i);
++
++ /* If this PHI has itself as an argument, ignore it.
++ If all the other args produce the same result,
++ we're still OK. */
++ if (arg == gimple_phi_result (stmt))
++ continue;
++ else if (TREE_CODE (arg) == INTEGER_CST)
++ {
++ if (invert ? integer_nonzerop (arg) : integer_zerop (arg))
++ {
++ if (!result)
++ result = boolean_false_node;
++ else if (!integer_zerop (result))
++ return NULL_TREE;
++ }
++ else if (!result)
++ result = fold_build2 (code2, boolean_type_node,
++ op2a, op2b);
++ else if (!same_bool_comparison_p (result,
++ code2, op2a, op2b))
++ return NULL_TREE;
++ }
++ else if (TREE_CODE (arg) == SSA_NAME)
++ {
++ tree temp = and_var_with_comparison (arg, invert,
++ code2, op2a, op2b);
++ if (!temp)
++ return NULL_TREE;
++ else if (!result)
++ result = temp;
++ else if (!same_bool_result_p (result, temp))
++ return NULL_TREE;
++ }
++ else
++ return NULL_TREE;
++ }
++ return result;
++ }
++
++ default:
++ break;
++ }
++ }
++ return NULL_TREE;
++}
++
++/* Try to simplify the AND of two comparisons, specified by
++ (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
++ If this can be simplified to a single expression (without requiring
++ introducing more SSA variables to hold intermediate values),
++ return the resulting tree. Otherwise return NULL_TREE.
++ If the result expression is non-null, it has boolean type. */
++
++tree
++maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
++ if (t)
++ return t;
++ else
++ return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
++}
++
++/* Helper function for or_comparisons_1: try to simplify the OR of the
++ ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B).
++ If INVERT is true, invert the value of VAR before doing the OR.
++ Return NULL_EXPR if we can't simplify this to a single expression. */
++
++static tree
++or_var_with_comparison (tree var, bool invert,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ tree t;
++ gimple stmt = SSA_NAME_DEF_STMT (var);
++
++ /* We can only deal with variables whose definitions are assignments. */
++ if (!is_gimple_assign (stmt))
++ return NULL_TREE;
++
++ /* If we have an inverted comparison, apply DeMorgan's law and rewrite
++ !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b))
++ Then we only have to consider the simpler non-inverted cases. */
++ if (invert)
++ t = and_var_with_comparison_1 (stmt,
++ invert_tree_comparison (code2, false),
++ op2a, op2b);
++ else
++ t = or_var_with_comparison_1 (stmt, code2, op2a, op2b);
++ return canonicalize_bool (t, invert);
++}
++
++/* Try to simplify the OR of the ssa variable defined by the assignment
++ STMT with the comparison specified by (OP2A CODE2 OP2B).
++ Return NULL_EXPR if we can't simplify this to a single expression. */
++
++static tree
++or_var_with_comparison_1 (gimple stmt,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ tree var = gimple_assign_lhs (stmt);
++ tree true_test_var = NULL_TREE;
++ tree false_test_var = NULL_TREE;
++ enum tree_code innercode = gimple_assign_rhs_code (stmt);
++
++ /* Check for identities like (var OR (var != 0)) => true . */
++ if (TREE_CODE (op2a) == SSA_NAME
++ && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE)
++ {
++ if ((code2 == NE_EXPR && integer_zerop (op2b))
++ || (code2 == EQ_EXPR && integer_nonzerop (op2b)))
++ {
++ true_test_var = op2a;
++ if (var == true_test_var)
++ return var;
++ }
++ else if ((code2 == EQ_EXPR && integer_zerop (op2b))
++ || (code2 == NE_EXPR && integer_nonzerop (op2b)))
++ {
++ false_test_var = op2a;
++ if (var == false_test_var)
++ return boolean_true_node;
++ }
++ }
++
++ /* If the definition is a comparison, recurse on it. */
++ if (TREE_CODE_CLASS (innercode) == tcc_comparison)
++ {
++ tree t = or_comparisons_1 (innercode,
++ gimple_assign_rhs1 (stmt),
++ gimple_assign_rhs2 (stmt),
++ code2,
++ op2a,
++ op2b);
++ if (t)
++ return t;
++ }
++
++ /* If the definition is an AND or OR expression, we may be able to
++ simplify by reassociating. */
++ if (innercode == TRUTH_AND_EXPR
++ || innercode == TRUTH_OR_EXPR
++ || (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE
++ && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)))
++ {
++ tree inner1 = gimple_assign_rhs1 (stmt);
++ tree inner2 = gimple_assign_rhs2 (stmt);
++ gimple s;
++ tree t;
++ tree partial = NULL_TREE;
++ bool is_or = (innercode == TRUTH_OR_EXPR || innercode == BIT_IOR_EXPR);
++
++ /* Check for boolean identities that don't require recursive examination
++ of inner1/inner2:
++ inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var
++ inner1 OR (inner1 AND inner2) => inner1
++ !inner1 OR (inner1 OR inner2) => true
++ !inner1 OR (inner1 AND inner2) => !inner1 OR inner2
++ */
++ if (inner1 == true_test_var)
++ return (is_or ? var : inner1);
++ else if (inner2 == true_test_var)
++ return (is_or ? var : inner2);
++ else if (inner1 == false_test_var)
++ return (is_or
++ ? boolean_true_node
++ : or_var_with_comparison (inner2, false, code2, op2a, op2b));
++ else if (inner2 == false_test_var)
++ return (is_or
++ ? boolean_true_node
++ : or_var_with_comparison (inner1, false, code2, op2a, op2b));
++
++ /* Next, redistribute/reassociate the OR across the inner tests.
++ Compute the first partial result, (inner1 OR (op2a code op2b)) */
++ if (TREE_CODE (inner1) == SSA_NAME
++ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1))
++ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
++ && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
++ gimple_assign_rhs1 (s),
++ gimple_assign_rhs2 (s),
++ code2, op2a, op2b)))
++ {
++ /* Handle the OR case, where we are reassociating:
++ (inner1 OR inner2) OR (op2a code2 op2b)
++ => (t OR inner2)
++ If the partial result t is a constant, we win. Otherwise
++ continue on to try reassociating with the other inner test. */
++ if (innercode == TRUTH_OR_EXPR)
++ {
++ if (integer_onep (t))
++ return boolean_true_node;
++ else if (integer_zerop (t))
++ return inner2;
++ }
++
++ /* Handle the AND case, where we are redistributing:
++ (inner1 AND inner2) OR (op2a code2 op2b)
++ => (t AND (inner2 OR (op2a code op2b))) */
++ else
++ {
++ if (integer_zerop (t))
++ return boolean_false_node;
++ else
++ /* Save partial result for later. */
++ partial = t;
++ }
++ }
++
++ /* Compute the second partial result, (inner2 OR (op2a code op2b)) */
++ if (TREE_CODE (inner2) == SSA_NAME
++ && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2))
++ && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison
++ && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s),
++ gimple_assign_rhs1 (s),
++ gimple_assign_rhs2 (s),
++ code2, op2a, op2b)))
++ {
++ /* Handle the OR case, where we are reassociating:
++ (inner1 OR inner2) OR (op2a code2 op2b)
++ => (inner1 OR t) */
++ if (innercode == TRUTH_OR_EXPR)
++ {
++ if (integer_zerop (t))
++ return inner1;
++ else if (integer_onep (t))
++ return boolean_true_node;
++ }
++
++ /* Handle the AND case, where we are redistributing:
++ (inner1 AND inner2) OR (op2a code2 op2b)
++ => (t AND (inner1 OR (op2a code2 op2b)))
++ => (t AND partial) */
++ else
++ {
++ if (integer_zerop (t))
++ return boolean_false_node;
++ else if (partial)
++ {
++ /* We already got a simplification for the other
++ operand to the redistributed AND expression. The
++ interesting case is when at least one is true.
++ Or, if both are the same, we can apply the identity
++ (x AND x) == true. */
++ if (integer_onep (partial))
++ return t;
++ else if (integer_onep (t))
++ return partial;
++ else if (same_bool_result_p (t, partial))
++ return boolean_true_node;
++ }
++ }
++ }
++ }
++ return NULL_TREE;
++}
++
++/* Try to simplify the OR of two comparisons defined by
++ (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively.
++ If this can be done without constructing an intermediate value,
++ return the resulting tree; otherwise NULL_TREE is returned.
++ This function is deliberately asymmetric as it recurses on SSA_DEFs
++ in the first comparison but not the second. */
++
++static tree
++or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ /* First check for ((x CODE1 y) OR (x CODE2 y)). */
++ if (operand_equal_p (op1a, op2a, 0)
++ && operand_equal_p (op1b, op2b, 0))
++ {
++ tree t = combine_comparisons (UNKNOWN_LOCATION,
++ TRUTH_ORIF_EXPR, code1, code2,
++ boolean_type_node, op1a, op1b);
++ if (t)
++ return t;
++ }
++
++ /* Likewise the swapped case of the above. */
++ if (operand_equal_p (op1a, op2b, 0)
++ && operand_equal_p (op1b, op2a, 0))
++ {
++ tree t = combine_comparisons (UNKNOWN_LOCATION,
++ TRUTH_ORIF_EXPR, code1,
++ swap_tree_comparison (code2),
++ boolean_type_node, op1a, op1b);
++ if (t)
++ return t;
++ }
++
++ /* If both comparisons are of the same value against constants, we might
++ be able to merge them. */
++ if (operand_equal_p (op1a, op2a, 0)
++ && TREE_CODE (op1b) == INTEGER_CST
++ && TREE_CODE (op2b) == INTEGER_CST)
++ {
++ int cmp = tree_int_cst_compare (op1b, op2b);
++
++ /* If we have (op1a != op1b), we should either be able to
++ return that or TRUE, depending on whether the constant op1b
++ also satisfies the other comparison against op2b. */
++ if (code1 == NE_EXPR)
++ {
++ bool done = true;
++ bool val;
++ switch (code2)
++ {
++ case EQ_EXPR: val = (cmp == 0); break;
++ case NE_EXPR: val = (cmp != 0); break;
++ case LT_EXPR: val = (cmp < 0); break;
++ case GT_EXPR: val = (cmp > 0); break;
++ case LE_EXPR: val = (cmp <= 0); break;
++ case GE_EXPR: val = (cmp >= 0); break;
++ default: done = false;
++ }
++ if (done)
++ {
++ if (val)
++ return boolean_true_node;
++ else
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ }
++ }
++ /* Likewise if the second comparison is a != comparison. */
++ else if (code2 == NE_EXPR)
++ {
++ bool done = true;
++ bool val;
++ switch (code1)
++ {
++ case EQ_EXPR: val = (cmp == 0); break;
++ case NE_EXPR: val = (cmp != 0); break;
++ case LT_EXPR: val = (cmp > 0); break;
++ case GT_EXPR: val = (cmp < 0); break;
++ case LE_EXPR: val = (cmp >= 0); break;
++ case GE_EXPR: val = (cmp <= 0); break;
++ default: done = false;
++ }
++ if (done)
++ {
++ if (val)
++ return boolean_true_node;
++ else
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ }
++ }
++
++ /* See if an equality test is redundant with the other comparison. */
++ else if (code1 == EQ_EXPR)
++ {
++ bool val;
++ switch (code2)
++ {
++ case EQ_EXPR: val = (cmp == 0); break;
++ case NE_EXPR: val = (cmp != 0); break;
++ case LT_EXPR: val = (cmp < 0); break;
++ case GT_EXPR: val = (cmp > 0); break;
++ case LE_EXPR: val = (cmp <= 0); break;
++ case GE_EXPR: val = (cmp >= 0); break;
++ default:
++ val = false;
++ }
++ if (val)
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ }
++ else if (code2 == EQ_EXPR)
++ {
++ bool val;
++ switch (code1)
++ {
++ case EQ_EXPR: val = (cmp == 0); break;
++ case NE_EXPR: val = (cmp != 0); break;
++ case LT_EXPR: val = (cmp > 0); break;
++ case GT_EXPR: val = (cmp < 0); break;
++ case LE_EXPR: val = (cmp >= 0); break;
++ case GE_EXPR: val = (cmp <= 0); break;
++ default:
++ val = false;
++ }
++ if (val)
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ }
++
++ /* Chose the less restrictive of two < or <= comparisons. */
++ else if ((code1 == LT_EXPR || code1 == LE_EXPR)
++ && (code2 == LT_EXPR || code2 == LE_EXPR))
++ {
++ if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR))
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ else
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ }
++
++ /* Likewise chose the less restrictive of two > or >= comparisons. */
++ else if ((code1 == GT_EXPR || code1 == GE_EXPR)
++ && (code2 == GT_EXPR || code2 == GE_EXPR))
++ {
++ if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR))
++ return fold_build2 (code2, boolean_type_node, op2a, op2b);
++ else
++ return fold_build2 (code1, boolean_type_node, op1a, op1b);
++ }
++
++ /* Check for singleton ranges. */
++ else if (cmp == 0
++ && ((code1 == LT_EXPR && code2 == GT_EXPR)
++ || (code1 == GT_EXPR && code2 == LT_EXPR)))
++ return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b);
++
++ /* Check for less/greater pairs that don't restrict the range at all. */
++ else if (cmp >= 0
++ && (code1 == LT_EXPR || code1 == LE_EXPR)
++ && (code2 == GT_EXPR || code2 == GE_EXPR))
++ return boolean_true_node;
++ else if (cmp <= 0
++ && (code1 == GT_EXPR || code1 == GE_EXPR)
++ && (code2 == LT_EXPR || code2 == LE_EXPR))
++ return boolean_true_node;
++ }
++
++ /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where
++ NAME's definition is a truth value. See if there are any simplifications
++ that can be done against the NAME's definition. */
++ if (TREE_CODE (op1a) == SSA_NAME
++ && (code1 == NE_EXPR || code1 == EQ_EXPR)
++ && (integer_zerop (op1b) || integer_onep (op1b)))
++ {
++ bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b))
++ || (code1 == NE_EXPR && integer_onep (op1b)));
++ gimple stmt = SSA_NAME_DEF_STMT (op1a);
++ switch (gimple_code (stmt))
++ {
++ case GIMPLE_ASSIGN:
++ /* Try to simplify by copy-propagating the definition. */
++ return or_var_with_comparison (op1a, invert, code2, op2a, op2b);
++
++ case GIMPLE_PHI:
++ /* If every argument to the PHI produces the same result when
++ ORed with the second comparison, we win.
++ Do not do this unless the type is bool since we need a bool
++ result here anyway. */
++ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE)
++ {
++ tree result = NULL_TREE;
++ unsigned i;
++ for (i = 0; i < gimple_phi_num_args (stmt); i++)
++ {
++ tree arg = gimple_phi_arg_def (stmt, i);
++
++ /* If this PHI has itself as an argument, ignore it.
++ If all the other args produce the same result,
++ we're still OK. */
++ if (arg == gimple_phi_result (stmt))
++ continue;
++ else if (TREE_CODE (arg) == INTEGER_CST)
++ {
++ if (invert ? integer_zerop (arg) : integer_nonzerop (arg))
++ {
++ if (!result)
++ result = boolean_true_node;
++ else if (!integer_onep (result))
++ return NULL_TREE;
++ }
++ else if (!result)
++ result = fold_build2 (code2, boolean_type_node,
++ op2a, op2b);
++ else if (!same_bool_comparison_p (result,
++ code2, op2a, op2b))
++ return NULL_TREE;
++ }
++ else if (TREE_CODE (arg) == SSA_NAME)
++ {
++ tree temp = or_var_with_comparison (arg, invert,
++ code2, op2a, op2b);
++ if (!temp)
++ return NULL_TREE;
++ else if (!result)
++ result = temp;
++ else if (!same_bool_result_p (result, temp))
++ return NULL_TREE;
++ }
++ else
++ return NULL_TREE;
++ }
++ return result;
++ }
++
++ default:
++ break;
++ }
++ }
++ return NULL_TREE;
++}
++
++/* Try to simplify the OR of two comparisons, specified by
++ (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively.
++ If this can be simplified to a single expression (without requiring
++ introducing more SSA variables to hold intermediate values),
++ return the resulting tree. Otherwise return NULL_TREE.
++ If the result expression is non-null, it has boolean type. */
++
++tree
++maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b,
++ enum tree_code code2, tree op2a, tree op2b)
++{
++ tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b);
++ if (t)
++ return t;
++ else
++ return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b);
++}
++
+ /* Try to optimize out __builtin_stack_restore. Optimize it out
+ if there is another __builtin_stack_restore in the same basic
+ block and no calls or ASM_EXPRs are in between, or if this block's
+
+=== modified file 'gcc/tree-ssa-ifcombine.c'
+--- old/gcc/tree-ssa-ifcombine.c 2009-11-25 10:55:54 +0000
++++ new/gcc/tree-ssa-ifcombine.c 2010-07-30 13:21:51 +0000
+@@ -366,21 +366,16 @@
+
+ /* See if we have two comparisons that we can merge into one. */
+ else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
+- && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
+- && operand_equal_p (gimple_cond_lhs (inner_cond),
+- gimple_cond_lhs (outer_cond), 0)
+- && operand_equal_p (gimple_cond_rhs (inner_cond),
+- gimple_cond_rhs (outer_cond), 0))
++ && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison)
+ {
+- enum tree_code code1 = gimple_cond_code (inner_cond);
+- enum tree_code code2 = gimple_cond_code (outer_cond);
+ tree t;
+
+- if (!(t = combine_comparisons (UNKNOWN_LOCATION,
+- TRUTH_ANDIF_EXPR, code1, code2,
+- boolean_type_node,
+- gimple_cond_lhs (outer_cond),
+- gimple_cond_rhs (outer_cond))))
++ if (!(t = maybe_fold_and_comparisons (gimple_cond_code (inner_cond),
++ gimple_cond_lhs (inner_cond),
++ gimple_cond_rhs (inner_cond),
++ gimple_cond_code (outer_cond),
++ gimple_cond_lhs (outer_cond),
++ gimple_cond_rhs (outer_cond))))
+ return false;
+ t = canonicalize_cond_expr_cond (t);
+ if (!t)
+@@ -518,22 +513,17 @@
+ /* See if we have two comparisons that we can merge into one.
+ This happens for C++ operator overloading where for example
+ GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */
+- else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
+- && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
+- && operand_equal_p (gimple_cond_lhs (inner_cond),
+- gimple_cond_lhs (outer_cond), 0)
+- && operand_equal_p (gimple_cond_rhs (inner_cond),
+- gimple_cond_rhs (outer_cond), 0))
++ else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
++ && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison)
+ {
+- enum tree_code code1 = gimple_cond_code (inner_cond);
+- enum tree_code code2 = gimple_cond_code (outer_cond);
+ tree t;
+
+- if (!(t = combine_comparisons (UNKNOWN_LOCATION,
+- TRUTH_ORIF_EXPR, code1, code2,
+- boolean_type_node,
+- gimple_cond_lhs (outer_cond),
+- gimple_cond_rhs (outer_cond))))
++ if (!(t = maybe_fold_or_comparisons (gimple_cond_code (inner_cond),
++ gimple_cond_lhs (inner_cond),
++ gimple_cond_rhs (inner_cond),
++ gimple_cond_code (outer_cond),
++ gimple_cond_lhs (outer_cond),
++ gimple_cond_rhs (outer_cond))))
+ return false;
+ t = canonicalize_cond_expr_cond (t);
+ if (!t)
+
+=== modified file 'gcc/tree-ssa-reassoc.c'
+--- old/gcc/tree-ssa-reassoc.c 2010-01-13 15:04:38 +0000
++++ new/gcc/tree-ssa-reassoc.c 2010-07-30 13:21:51 +0000
+@@ -1159,6 +1159,117 @@
+ return changed;
+ }
+
++/* If OPCODE is BIT_IOR_EXPR or BIT_AND_EXPR and CURR is a comparison
++ expression, examine the other OPS to see if any of them are comparisons
++ of the same values, which we may be able to combine or eliminate.
++ For example, we can rewrite (a < b) | (a == b) as (a <= b). */
++
++static bool
++eliminate_redundant_comparison (enum tree_code opcode,
++ VEC (operand_entry_t, heap) **ops,
++ unsigned int currindex,
++ operand_entry_t curr)
++{
++ tree op1, op2;
++ enum tree_code lcode, rcode;
++ gimple def1, def2;
++ int i;
++ operand_entry_t oe;
++
++ if (opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
++ return false;
++
++ /* Check that CURR is a comparison. */
++ if (TREE_CODE (curr->op) != SSA_NAME)
++ return false;
++ def1 = SSA_NAME_DEF_STMT (curr->op);
++ if (!is_gimple_assign (def1))
++ return false;
++ lcode = gimple_assign_rhs_code (def1);
++ if (TREE_CODE_CLASS (lcode) != tcc_comparison)
++ return false;
++ op1 = gimple_assign_rhs1 (def1);
++ op2 = gimple_assign_rhs2 (def1);
++
++ /* Now look for a similar comparison in the remaining OPS. */
++ for (i = currindex + 1;
++ VEC_iterate (operand_entry_t, *ops, i, oe);
++ i++)
++ {
++ tree t;
++
++ if (TREE_CODE (oe->op) != SSA_NAME)
++ continue;
++ def2 = SSA_NAME_DEF_STMT (oe->op);
++ if (!is_gimple_assign (def2))
++ continue;
++ rcode = gimple_assign_rhs_code (def2);
++ if (TREE_CODE_CLASS (rcode) != tcc_comparison)
++ continue;
++
++ /* If we got here, we have a match. See if we can combine the
++ two comparisons. */
++ if (opcode == BIT_IOR_EXPR)
++ t = maybe_fold_or_comparisons (lcode, op1, op2,
++ rcode, gimple_assign_rhs1 (def2),
++ gimple_assign_rhs2 (def2));
++ else
++ t = maybe_fold_and_comparisons (lcode, op1, op2,
++ rcode, gimple_assign_rhs1 (def2),
++ gimple_assign_rhs2 (def2));
++ if (!t)
++ continue;
++
++ /* maybe_fold_and_comparisons and maybe_fold_or_comparisons
++ always give us a boolean_type_node value back. If the original
++ BIT_AND_EXPR or BIT_IOR_EXPR was of a wider integer type,
++ we need to convert. */
++ if (!useless_type_conversion_p (TREE_TYPE (curr->op), TREE_TYPE (t)))
++ t = fold_convert (TREE_TYPE (curr->op), t);
++
++ if (dump_file && (dump_flags & TDF_DETAILS))
++ {
++ fprintf (dump_file, "Equivalence: ");
++ print_generic_expr (dump_file, curr->op, 0);
++ fprintf (dump_file, " %s ", op_symbol_code (opcode));
++ print_generic_expr (dump_file, oe->op, 0);
++ fprintf (dump_file, " -> ");
++ print_generic_expr (dump_file, t, 0);
++ fprintf (dump_file, "\n");
++ }
++
++ /* Now we can delete oe, as it has been subsumed by the new combined
++ expression t. */
++ VEC_ordered_remove (operand_entry_t, *ops, i);
++ reassociate_stats.ops_eliminated ++;
++
++ /* If t is the same as curr->op, we're done. Otherwise we must
++ replace curr->op with t. Special case is if we got a constant
++ back, in which case we add it to the end instead of in place of
++ the current entry. */
++ if (TREE_CODE (t) == INTEGER_CST)
++ {
++ VEC_ordered_remove (operand_entry_t, *ops, currindex);
++ add_to_ops_vec (ops, t);
++ }
++ else if (!operand_equal_p (t, curr->op, 0))
++ {
++ tree tmpvar;
++ gimple sum;
++ enum tree_code subcode;
++ tree newop1;
++ tree newop2;
++ tmpvar = create_tmp_var (TREE_TYPE (t), NULL);
++ add_referenced_var (tmpvar);
++ extract_ops_from_tree (t, &subcode, &newop1, &newop2);
++ sum = build_and_add_sum (tmpvar, newop1, newop2, subcode);
++ curr->op = gimple_get_lhs (sum);
++ }
++ return true;
++ }
++
++ return false;
++}
+
+ /* Perform various identities and other optimizations on the list of
+ operand entries, stored in OPS. The tree code for the binary
+@@ -1220,7 +1331,8 @@
+ if (eliminate_not_pairs (opcode, ops, i, oe))
+ return;
+ if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
+- || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
++ || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe))
++ || (!done && eliminate_redundant_comparison (opcode, ops, i, oe)))
+ {
+ if (done)
+ return;
+