aboutsummaryrefslogtreecommitdiffstats
path: root/meta/recipes-devtools/libdnf/libdnf/0002-Prefix-sysroot-path-to-introspection-tools-path.patch
blob: 3d772a5f8a3f9be68c6b9e2d12d262d8c6216d00 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
From c8211ad99ccaa4af4a75e0ba639527267fcfd69e Mon Sep 17 00:00:00 2001
From: Alexander Kanavin <alex.kanavin@gmail.com>
Date: Fri, 30 Dec 2016 18:17:19 +0200
Subject: [PATCH 2/4] Prefix sysroot path to introspection tools path.

Upstream-Status: Pending
Signed-off-by: Alexander Kanavin <alex.kanavin@gmail.com>
---
 libdnf/CMakeLists.txt | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/libdnf/CMakeLists.txt b/libdnf/CMakeLists.txt
index 63f07bf..837792b 100644
--- a/libdnf/CMakeLists.txt
+++ b/libdnf/CMakeLists.txt
@@ -133,7 +133,7 @@ if (GOBJECT_INTROSPECTION_FOUND)
         set(GIR_TYPELIB "${GIR_PREFIX}.typelib")
 
         add_custom_command(OUTPUT ${GIR_XML}
-            COMMAND env CFLAGS=${CMAKE_C_FLAGS} ${GOBJECT_INTROSPECTION_1.0_G_IR_SCANNER}
+            COMMAND env CFLAGS=${CMAKE_C_FLAGS} $ENV{PKG_CONFIG_SYSROOT_DIR}${GOBJECT_INTROSPECTION_1.0_G_IR_SCANNER}
                     --namespace=Dnf
                     --nsversion=${DNF_SO_VERSION}.0
                     --library-path=${CMAKE_CURRENT_BINARY_DIR}
@@ -153,7 +153,7 @@ if (GOBJECT_INTROSPECTION_FOUND)
             WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
 
         add_custom_command(OUTPUT ${GIR_TYPELIB}
-            COMMAND ${GOBJECT_INTROSPECTION_1.0_G_IR_COMPILER}
+            COMMAND $ENV{PKG_CONFIG_SYSROOT_DIR}${GOBJECT_INTROSPECTION_1.0_G_IR_COMPILER}
                     -o ${GIR_TYPELIB}
                     ${GIR_XML}
             DEPENDS ${GIR_XML}
-- 
2.11.0
href='#n401'>401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >

<chapter id='technical-details'>
<title>Technical Details</title>

    <para>
        This chapter provides technical details for various parts of the Yocto Project.
        Currently, topics include Yocto Project components,
        shared state (sstate) cache, x32, and Licenses.
    </para>

<section id='usingpoky-components'>
    <title>Yocto Project Components</title>

    <para>
        The BitBake task executor together with various types of configuration files form the
        OpenEmbedded Core.
        This section overviews these by describing what they are used for
        and how they interact.
    </para>

    <para>
        BitBake handles the parsing and execution of the data files.
        The data itself is of various types:
    <itemizedlist>
        <listitem><para><emphasis>Recipes:</emphasis>  Provides details about particular
            pieces of software.</para></listitem>
        <listitem><para><emphasis>Class Data:</emphasis>  Abstracts common build
            information (e.g. how to build a Linux kernel).</para></listitem>
        <listitem><para><emphasis>Configuration Data:</emphasis>  Defines machine-specific settings,
            policy decisions, and so forth.
            Configuration data acts as the glue to bind everything together.</para></listitem>
    </itemizedlist>
        For more information on data, see the
        "<ulink url='&YOCTO_DOCS_DEV_URL;#yocto-project-terms'>Yocto Project Terms</ulink>"
        section in the Yocto Project Development Manual.
    </para>

    <para>
        BitBake knows how to combine multiple data sources together and refers to each data source
        as a layer.
        For information on layers, see the
        "<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and
        Creating Layers</ulink>" section of the Yocto Project Development Manual.
    </para>

    <para>
        Following are some brief details on these core components.
        For more detailed information on these components, see the
        "<link linkend='ref-structure'>Source Directory Structure</link>" chapter.
    </para>

    <section id='usingpoky-components-bitbake'>
        <title>BitBake</title>

        <para>
            BitBake is the tool at the heart of the OpenEmbedded build system
            and is responsible for parsing the
            <ulink url='&YOCTO_DOCS_DEV_URL;#metadata'>Metadata</ulink>,
            generating a list of tasks from it, and then executing those tasks.
            To see a list of the options BitBake supports, use the following
            help command:
            <literallayout class='monospaced'>
     $ bitbake --help
            </literallayout>
        </para>

        <para>
            The most common usage for BitBake is <filename>bitbake &lt;packagename&gt;</filename>, where
            <filename>packagename</filename> is the name of the package you want to build
            (referred to as the "target" in this manual).
            The target often equates to the first part of a <filename>.bb</filename> filename.
            So, to run the <filename>matchbox-desktop_1.2.3.bb</filename> file, you
            might type the following:
            <literallayout class='monospaced'>
     $ bitbake matchbox-desktop
            </literallayout>
            Several different versions of <filename>matchbox-desktop</filename> might exist.
            BitBake chooses the one selected by the distribution configuration.
            You can get more details about how BitBake chooses between different
            target versions and providers in the
            "<link linkend='ref-bitbake-providers'>Preferences and Providers</link>" section.
        </para>

        <para>
            BitBake also tries to execute any dependent tasks first.
            So for example, before building <filename>matchbox-desktop</filename>, BitBake
            would build a cross compiler and <filename>eglibc</filename> if they had not already
            been built.
            <note>This release of the Yocto Project does not support the <filename>glibc</filename>
                GNU version of the Unix standard C library.  By default, the OpenEmbedded build system
                builds with <filename>eglibc</filename>.</note>
        </para>

        <para>
            A useful BitBake option to consider is the <filename>-k</filename> or
            <filename>--continue</filename> option.
            This option instructs BitBake to try and continue processing the job as much
            as possible even after encountering an error.
            When an error occurs, the target that
            failed and those that depend on it cannot be remade.
            However, when you use this option other dependencies can still be processed.
        </para>
    </section>

    <section id='usingpoky-components-metadata'>
        <title>Metadata (Recipes)</title>

        <para>
            The <filename>.bb</filename> files are usually referred to as "recipes."
            In general, a recipe contains information about a single piece of software.
            The information includes the location from which to download the source patches
            (if any are needed), which special configuration options to apply,
            how to compile the source files, and how to package the compiled output.
        </para>

        <para>
            The term "package" can also be used to describe recipes.
            However, since the same word is used for the packaged output from the OpenEmbedded
            build system (i.e. <filename>.ipk</filename> or <filename>.deb</filename> files),
            this document avoids using the term "package" when referring to recipes.
        </para>
    </section>

    <section id='usingpoky-components-classes'>
        <title>Classes</title>

        <para>
            Class files (<filename>.bbclass</filename>) contain information that
            is useful to share between
            <ulink url='&YOCTO_DOCS_DEV_URL;#metadata'>Metadata</ulink> files.
            An example is the Autotools class, which contains
            common settings for any application that Autotools uses.
            The "<link linkend='ref-classes'>Classes</link>" chapter provides details
            about common classes and how to use them.
        </para>
    </section>

    <section id='usingpoky-components-configuration'>
        <title>Configuration</title>

        <para>
            The configuration files (<filename>.conf</filename>) define various configuration variables
            that govern the OpenEmbedded build process.
            These files fall into several areas that define machine configuration options,
            distribution configuration options, compiler tuning options, general common configuration
            options, and user configuration options in <filename>local.conf</filename>, which is found
            in the
            <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>.
        </para>
    </section>
</section>

<section id="cross-development-toolchain-generation">
    <title>Cross-Development Toolchain Generation</title>

    <para>
        The Yocto Project does most of the work for you when it comes to
        creating
        <ulink url='&YOCTO_DOCS_DEV_URL;#cross-development-toolchain'>cross-development toolchains</ulink>.
        This section provides some technical background information on how
        cross-development toolchains are created and used.
        For more information on these toolchain, you can also see the
        <ulink url='&YOCTO_DOCS_ADT_URL;'>the Yocto Project Application Developer's Guide</ulink>.
    </para>

    <para>
        In the Yocto Project development environment, cross-development
        toolchains are used to build the image and applications that run on the
        target hardware.
        With just a few commands, the OpenEmbedded build system creates
        these necessary toolchains for you.
    </para>

    <para>
        The following figure shows a high-level build environment regarding
        toolchain construction and use.
    </para>

    <para>
        <imagedata fileref="figures/cross-development-toolchains.png" width="8in" depth="6in" align="center" />
    </para>

    <para>
        Most of the work occurs on the Build Host.
        This is the machine used to build images and generally work within the
        the Yocto Project environment.
        When you run BitBake to create an image, the OpenEmbedded build system
        uses the host <filename>gcc</filename> compiler to bootstrap a
        cross-compiler named <filename>gcc-cross</filename>.
        The <filename>gcc-cross</filename> compiler is what BitBake uses to
        compile source files when creating the target image.
        You can think of <filename>gcc-cross</filename> simply as an
        automatically generated cross-compiler that is used internally within
        BitBake only.
    </para>

    <para>
        The chain of events that occurs when <filename>gcc-cross</filename> is
        bootstrapped is as follows:
        <literallayout class='monospaced'>
     gcc -> binutils-cross -> gcc-cross-initial -> linux-libc-headers -> eglibc-initial -> eglibc -> gcc-cross -> gcc-runtime
        </literallayout>
        <itemizedlist>
            <listitem><para><filename>gcc</filename>:
                The build host's GNU Compiler Collection (GCC).
                </para></listitem>
            <listitem><para><filename>binutils-cross</filename>:
                The bare minimum binary utilities needed in order to run
                the <filename>gcc-cross-initial</filename> phase of the
                bootstrap operation.
                </para></listitem>
            <listitem><para><filename>gcc-cross-initial</filename>:
                An early stage of the bootstrap process for creating
                the cross-compiler.
                This stage builds enough of the <filename>gcc-cross</filename>,
                the C library, and other pieces needed to finish building the
                final cross-compiler in later stages.
                This tool is a "native" package (i.e. it is designed to run on
                the build host).
                </para></listitem>
            <listitem><para><filename>linux-libc-headers</filename>:
                Headers needed for the cross-compiler.
                </para></listitem>
            <listitem><para><filename>eglibc-initial</filename>:
                An initial version of the Embedded GLIBC needed to bootstrap
                <filename>eglibc</filename>.
                </para></listitem>
            <listitem><para><filename>gcc-cross</filename>:
                The final stage of the bootstrap process for the
                cross-compiler.
                This stage results in the actual cross-compiler that
                BitBake uses when it builds an image for a targeted
                device.
                <note>
                    If you are replacing this cross compiler toolchain
                    with a custom version, you must replace
                    <filename>gcc-cross</filename>.
                </note>
                This tool is also a "native" package (i.e. it is
                designed to run on the build host).
                </para></listitem>
            <listitem><para><filename>gcc-runtime</filename>:
                Runtime libraries resulting from the toolchain bootstrapping
                process.
                This tool produces a binary that consists of the
                runtime libraries need for the targeted device.
                </para></listitem>
        </itemizedlist>
    </para>

    <para>
        You can use the OpenEmbedded build system to build an installer for
        the relocatable SDK used to develop applications.
        When you run the installer, it installs the toolchain, which contains
        the development tools (e.g., the
        <filename>gcc-cross-canadian</filename>),
        <filename>binutils-cross-canadian</filename>, and other
        <filename>nativesdk-*</filename> tools you need to cross-compile and
        test your software.
        The figure shows the commands you use to easily build out this
        toolchain.
        This cross-development toolchain is built to execute on the
        <link linkend='var-SDKMACHINE'><filename>SDKMACHINE</filename></link>,
        which might or might not be the same
        machine as the Build Host.
        <note>
            If your target architecture is supported by the Yocto Project,
            you can take advantage of pre-built images that ship with the
            Yocto Project and already contain cross-development toolchain
            installers.
        </note>
    </para>

    <para>
        Here is the bootstrap process for the relocatable toolchain:
        <literallayout class='monospaced'>
     gcc -> binutils-crosssdk -> gcc-crosssdk-initial -> linux-libc-headers -> eglibc-initial -> nativesdk-eglibc -> gcc-crosssdk -> gcc-cross-canadian
        </literallayout>
        <itemizedlist>
            <listitem><para><filename>gcc</filename>:
                The build host's GNU Compiler Collection (GCC).
                </para></listitem>
            <listitem><para><filename>binutils-crosssdk</filename>:
                The bare minimum binary utilities needed in order to run
                the <filename>gcc-crosssdk-initial</filename> phase of the
                bootstrap operation.
                </para></listitem>
            <listitem><para><filename>gcc-crosssdk-initial</filename>:
                An early stage of the bootstrap process for creating
                the cross-compiler.
                This stage builds enough of the
                <filename>gcc-crosssdk</filename> and supporting pieces so that
                the final stage of the bootstrap process can produce the
                finished cross-compiler.
                This tool is a "native" binary that runs on the build host.
                </para></listitem>
            <listitem><para><filename>linux-libc-headers</filename>:
                Headers needed for the cross-compiler.
                </para></listitem>
            <listitem><para><filename>eglibc-initial</filename>:
                An initial version of the Embedded GLIBC needed to bootstrap
                <filename>nativesdk-eglibc</filename>.
                </para></listitem>
            <listitem><para><filename>nativesdk-eglibc</filename>:
                The Embedded GLIBC needed to bootstrap the
                <filename>gcc-crosssdk</filename>.
                </para></listitem>
            <listitem><para><filename>gcc-crosssdk</filename>:
                The final stage of the bootstrap process for the
                relocatable cross-compiler.
                The <filename>gcc-crosssdk</filename> is a transitory compiler
                and never leaves the build host.
                Its purpose is to help in the bootstrap process to create the
                eventual relocatable <filename>gcc-cross-canadian</filename>
                compiler, which is relocatable.
                This tool is also a "native" package (i.e. it is
                designed to run on the build host).
                </para></listitem>
            <listitem><para><filename>gcc-cross-canadian</filename>:
                The final relocatable cross-compiler.
                When run on the
                <link linkend='var-SDKMACHINE'><filename>SDKMACHINE</filename></link>,
                this tool
                produces executable code that runs on the target device.
                </para></listitem>
        </itemizedlist>
    </para>
</section>

<section id="shared-state-cache">
    <title>Shared State Cache</title>

    <para>
        By design, the OpenEmbedded build system builds everything from scratch unless
        BitBake can determine that parts do not need to be rebuilt.
        Fundamentally, building from scratch is attractive as it means all parts are
        built fresh and there is no possibility of stale data causing problems.
        When developers hit problems, they typically default back to building from scratch
        so they know the state of things from the start.
    </para>

    <para>
        Building an image from scratch is both an advantage and a disadvantage to the process.
        As mentioned in the previous paragraph, building from scratch ensures that
        everything is current and starts from a known state.
        However, building from scratch also takes much longer as it generally means
        rebuilding things that do not necessarily need rebuilt.
    </para>

    <para>
        The Yocto Project implements shared state code that supports incremental builds.
        The implementation of the shared state code answers the following questions that
        were fundamental roadblocks within the OpenEmbedded incremental build support system:
        <itemizedlist>
            <listitem>What pieces of the system have changed and what pieces have not changed?</listitem>
            <listitem>How are changed pieces of software removed and replaced?</listitem>
            <listitem>How are pre-built components that do not need to be rebuilt from scratch
                used when they are available?</listitem>
        </itemizedlist>
    </para>

    <para>
        For the first question, the build system detects changes in the "inputs" to a given task by
        creating a checksum (or signature) of the task's inputs.
        If the checksum changes, the system assumes the inputs have changed and the task needs to be
        rerun.
        For the second question, the shared state (sstate) code tracks which tasks add which output
        to the build process.
        This means the output from a given task can be removed, upgraded or otherwise manipulated.
        The third question is partly addressed by the solution for the second question
        assuming the build system can fetch the sstate objects from remote locations and
        install them if they are deemed to be valid.
    </para>

    <note>
        The OpenEmbedded build system does not maintain
        <link linkend='var-PR'><filename>PR</filename></link> information
        as part of the shared state packages.
        Consequently, considerations exist that affect maintaining shared
        state feeds.
        For information on how the OpenEmbedded works with packages and can
        track incrementing <filename>PR</filename> information, see the
        "<ulink url='&YOCTO_DOCS_DEV_URL;#incrementing-a-package-revision-number'>Incrementing a Package Revision Number</ulink>"
        section.
    </note>

    <para>
        The rest of this section goes into detail about the overall incremental build
        architecture, the checksums (signatures), shared state, and some tips and tricks.
    </para>

    <section id='overall-architecture'>
        <title>Overall Architecture</title>

        <para>
            When determining what parts of the system need to be built, BitBake
            uses a per-task basis and does not use a per-recipe basis.
            You might wonder why using a per-task basis is preferred over a per-recipe basis.
            To help explain, consider having the IPK packaging backend enabled and then switching to DEB.
            In this case, <filename>do_install</filename> and <filename>do_package</filename>
            output are still valid.
            However, with a per-recipe approach, the build would not include the
            <filename>.deb</filename> files.
            Consequently, you would have to invalidate the whole build and rerun it.
            Rerunning everything is not the best situation.
            Also in this case, the core must be "taught" much about specific tasks.
            This methodology does not scale well and does not allow users to easily add new tasks
            in layers or as external recipes without touching the packaged-staging core.
        </para>
    </section>

    <section id='checksums'>
        <title>Checksums (Signatures)</title>

        <para>
            The shared state code uses a checksum, which is a unique signature of a task's
            inputs, to determine if a task needs to be run again.
            Because it is a change in a task's inputs that triggers a rerun, the process
            needs to detect all the inputs to a given task.
            For shell tasks, this turns out to be fairly easy because
            the build process generates a "run" shell script for each task and
            it is possible to create a checksum that gives you a good idea of when
            the task's data changes.
        </para>

        <para>
            To complicate the problem, there are things that should not be included in
            the checksum.
            First, there is the actual specific build path of a given task -
            the <link linkend='var-WORKDIR'><filename>WORKDIR</filename></link>.
            It does not matter if the working directory changes because it should not
            affect the output for target packages.
            Also, the build process has the objective of making native or cross packages relocatable.
            The checksum therefore needs to exclude <filename>WORKDIR</filename>.
            The simplistic approach for excluding the working directory is to set
            <filename>WORKDIR</filename> to some fixed value and create the checksum
            for the "run" script.
        </para>

        <para>
            Another problem results from the "run" scripts containing functions that
            might or might not get called.
            The incremental build solution contains code that figures out dependencies
            between shell functions.
            This code is used to prune the "run" scripts down to the minimum set,
            thereby alleviating this problem and making the "run" scripts much more
            readable as a bonus.
        </para>

        <para>
            So far we have solutions for shell scripts.
            What about Python tasks?
            The same approach applies even though these tasks are more difficult.
            The process needs to figure out what variables a Python function accesses
            and what functions it calls.
            Again, the incremental build solution contains code that first figures out
            the variable and function dependencies, and then creates a checksum for the data
            used as the input to the task.
        </para>

        <para>
            Like the <filename>WORKDIR</filename> case, situations exist where dependencies
            should be ignored.
            For these cases, you can instruct the build process to ignore a dependency
            by using a line like the following:
            <literallayout class='monospaced'>
     PACKAGE_ARCHS[vardepsexclude] = "MACHINE"
            </literallayout>
            This example ensures that the <filename>PACKAGE_ARCHS</filename> variable does not
            depend on the value of <filename>MACHINE</filename>, even if it does reference it.
        </para>

        <para>
            Equally, there are cases where we need to add dependencies BitBake is not able to find.
            You can accomplish this by using a line like the following:
            <literallayout class='monospaced'>
      PACKAGE_ARCHS[vardeps] = "MACHINE"
            </literallayout>
            This example explicitly adds the <filename>MACHINE</filename> variable as a
            dependency for <filename>PACKAGE_ARCHS</filename>.
        </para>

        <para>
            Consider a case with in-line Python, for example, where BitBake is not
            able to figure out dependencies.
            When running in debug mode (i.e. using <filename>-DDD</filename>), BitBake
            produces output when it discovers something for which it cannot figure out
            dependencies.
            The Yocto Project team has currently not managed to cover those dependencies
            in detail and is aware of the need to fix this situation.
        </para>

        <para>
            Thus far, this section has limited discussion to the direct inputs into a task.
            Information based on direct inputs is referred to as the "basehash" in the
            code.
            However, there is still the question of a task's indirect inputs - the
            things that were already built and present in the
            <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>.
            The checksum (or signature) for a particular task needs to add the hashes
            of all the tasks on which the particular task depends.
            Choosing which dependencies to add is a policy decision.
            However, the effect is to generate a master checksum that combines the basehash
            and the hashes of the task's dependencies.
        </para>

        <para>
            At the code level, there are a variety of ways both the basehash and the
            dependent task hashes can be influenced.
            Within the BitBake configuration file, we can give BitBake some extra information
            to help it construct the basehash.
            The following statements effectively result in a list of global variable
            dependency excludes - variables never included in any checksum:
            <literallayout class='monospaced'>
  BB_HASHBASE_WHITELIST ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH"
  BB_HASHBASE_WHITELIST += "DL_DIR SSTATE_DIR THISDIR FILESEXTRAPATHS"
  BB_HASHBASE_WHITELIST += "FILE_DIRNAME HOME LOGNAME SHELL TERM USER"
  BB_HASHBASE_WHITELIST += "FILESPATH USERNAME STAGING_DIR_HOST STAGING_DIR_TARGET"
            </literallayout>
            The previous example actually excludes
            <link linkend='var-WORKDIR'><filename>WORKDIR</filename></link>
            since it is actually constructed as a path within
            <link linkend='var-TMPDIR'><filename>TMPDIR</filename></link>, which is on
            the whitelist.
        </para>

        <para>
            The rules for deciding which hashes of dependent tasks to include through
            dependency chains are more complex and are generally accomplished with a
            Python function.
            The code in <filename>meta/lib/oe/sstatesig.py</filename> shows two examples
            of this and also illustrates how you can insert your own policy into the system
            if so desired.
            This file defines the two basic signature generators <filename>OE-Core</filename>
            uses:  "OEBasic" and "OEBasicHash".
            By default, there is a dummy "noop" signature handler enabled in BitBake.
            This means that behavior is unchanged from previous versions.
            <filename>OE-Core</filename> uses the "OEBasicHash" signature handler by default
            through this setting in the <filename>bitbake.conf</filename> file:
            <literallayout class='monospaced'>
  BB_SIGNATURE_HANDLER ?= "OEBasicHash"
            </literallayout>
            The "OEBasicHash" <filename>BB_SIGNATURE_HANDLER</filename> is the same as the
            "OEBasic" version but adds the task hash to the stamp files.
            This results in any
            <ulink url='&YOCTO_DOCS_DEV_URL;#metadata'>Metadata</ulink>
            change that changes the task hash, automatically
            causing the task to be run again.
            This removes the need to bump <link linkend='var-PR'><filename>PR</filename></link>
            values and changes to Metadata automatically ripple across the build.
        </para>

        <para>
            It is also worth noting that the end result of these signature generators is to
            make some dependency and hash information available to the build.
            This information includes:
            <literallayout class='monospaced'>
  BB_BASEHASH_task-&lt;taskname&gt; - the base hashes for each task in the recipe
  BB_BASEHASH_&lt;filename:taskname&gt; - the base hashes for each dependent task
  BBHASHDEPS_&lt;filename:taskname&gt; - The task dependencies for each task
  BB_TASKHASH - the hash of the currently running task
            </literallayout>
        </para>
    </section>

    <section id='shared-state'>
        <title>Shared State</title>

        <para>
            Checksums and dependencies, as discussed in the previous section, solve half the
            problem.
            The other part of the problem is being able to use checksum information during the build
            and being able to reuse or rebuild specific components.
        </para>

        <para>
            The shared state class (<filename>sstate.bbclass</filename>)
            is a relatively generic implementation of how to "capture" a snapshot of a given task.
            The idea is that the build process does not care about the source of a task's output.
            Output could be freshly built or it could be downloaded and unpacked from
            somewhere - the build process does not need to worry about its source.
        </para>

        <para>
            There are two types of output, one is just about creating a directory
            in <link linkend='var-WORKDIR'><filename>WORKDIR</filename></link>.
            A good example is the output of either <filename>do_install</filename> or
            <filename>do_package</filename>.
            The other type of output occurs when a set of data is merged into a shared directory
            tree such as the sysroot.
        </para>

        <para>
            The Yocto Project team has tried to keep the details of the implementation hidden in
            <filename>sstate.bbclass</filename>.
            From a user's perspective, adding shared state wrapping to a task
            is as simple as this <filename>do_deploy</filename> example taken from
            <filename>do_deploy.bbclass</filename>:
            <literallayout class='monospaced'>
     DEPLOYDIR = "${WORKDIR}/deploy-${PN}"
     SSTATETASKS += "do_deploy"
     do_deploy[sstate-name] = "deploy"
     do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"
     do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"

     python do_deploy_setscene () {
         sstate_setscene(d)
     }
     addtask do_deploy_setscene
            </literallayout>
            In the example, we add some extra flags to the task, a name field ("deploy"), an
            input directory where the task sends data, and the output
            directory where the data from the task should eventually be copied.
            We also add a <filename>_setscene</filename> variant of the task and add the task
            name to the <filename>SSTATETASKS</filename> list.
        </para>

        <para>
            If you have a directory whose contents you need to preserve, you can do this with
            a line like the following:
            <literallayout class='monospaced'>
     do_package[sstate-plaindirs] = "${PKGD} ${PKGDEST}"
            </literallayout>
            This method, as well as the following example, also works for multiple directories.
            <literallayout class='monospaced'>
     do_package[sstate-inputdirs] = "${PKGDESTWORK} ${SHLIBSWORKDIR}"
     do_package[sstate-outputdirs] = "${PKGDATA_DIR} ${SHLIBSDIR}"
     do_package[sstate-lockfile] = "${PACKAGELOCK}"
            </literallayout>
            These methods also include the ability to take a lockfile when manipulating
            shared state directory structures since some cases are sensitive to file
            additions or removals.
        </para>

        <para>
            Behind the scenes, the shared state code works by looking in
            <link linkend='var-SSTATE_DIR'><filename>SSTATE_DIR</filename></link> and
            <link linkend='var-SSTATE_MIRRORS'><filename>SSTATE_MIRRORS</filename></link>
            for shared state files.
            Here is an example:
            <literallayout class='monospaced'>
     SSTATE_MIRRORS ?= "\
     file://.* http://someserver.tld/share/sstate/PATH \n \
     file://.* file:///some/local/dir/sstate/PATH"
            </literallayout>
            <note>
                The shared state directory (<filename>SSTATE_DIR</filename>) is
                organized into two-character subdirectories, where the subdirectory
                names are based on the first two characters of the hash.
                If the shared state directory structure for a mirror has the
                same structure as <filename>SSTATE_DIR</filename>, you must
                specify "PATH" as part of the URI to enable the build system
                to map to the appropriate subdirectory.
            </note>
        </para>

        <para>
            The shared state package validity can be detected just by looking at the
            filename since the filename contains the task checksum (or signature) as
            described earlier in this section.
            If a valid shared state package is found, the build process downloads it
            and uses it to accelerate the task.
        </para>

        <para>
            The build processes use the <filename>*_setscene</filename> tasks
            for the task acceleration phase.
            BitBake goes through this phase before the main execution code and tries
            to accelerate any tasks for which it can find shared state packages.
            If a shared state package for a task is available, the shared state
            package is used.
            This means the task and any tasks on which it is dependent are not
            executed.
        </para>

        <para>
            As a real world example, the aim is when building an IPK-based image,
            only the <filename>do_package_write_ipk</filename> tasks would have their
            shared state packages fetched and extracted.
            Since the sysroot is not used, it would never get extracted.
            This is another reason why a task-based approach is preferred over a
            recipe-based approach, which would have to install the output from every task.
        </para>
    </section>

    <section id='tips-and-tricks'>
        <title>Tips and Tricks</title>

        <para>
            The code in the build system that supports incremental builds is not
            simple code.
            This section presents some tips and tricks that help you work around
            issues related to shared state code.
        </para>

        <section id='debugging'>
            <title>Debugging</title>

            <para>
                When things go wrong, debugging needs to be straightforward.
                Because of this, the Yocto Project team included strong debugging
                tools:
                <itemizedlist>
                    <listitem><para>Whenever a shared state package is written out, so is a
                        corresponding <filename>.siginfo</filename> file.
                        This practice results in a pickled Python database of all
                        the metadata that went into creating the hash for a given shared state
                        package.</para></listitem>
                    <listitem><para>If you run BitBake with the <filename>--dump-signatures</filename>
                        (or <filename>-S</filename>) option, BitBake dumps out
                        <filename>.siginfo</filename> files in
                        the stamp directory for every task it would have executed instead of
                        building the specified target package.</para></listitem>
                    <listitem><para>There is a <filename>bitbake-diffsigs</filename> command that
                        can process <filename>.siginfo</filename> files.
                        If you specify one of these files, BitBake dumps out the dependency
                        information in the file.
                        If you specify two files, BitBake compares the two files and dumps out
                        the differences between the two.
                        This more easily helps answer the question of "What
                        changed between X and Y?"</para></listitem>
                </itemizedlist>
            </para>
        </section>

        <section id='invalidating-shared-state'>
            <title>Invalidating Shared State</title>

            <para>
                The shared state code uses checksums and shared state
                cache to avoid unnecessarily rebuilding tasks.
                As with all schemes, this one has some drawbacks.
                It is possible that you could make implicit changes that are not factored
                into the checksum calculation, but do affect a task's output.
                A good example is perhaps when a tool changes its output.
                Assume that the output of <filename>rpmdeps</filename> needed to change.
                The result of the change should be that all the
                <filename>package</filename>, <filename>package_write_rpm</filename>,
                and <filename>package_deploy-rpm</filename> shared state cache
                items would become invalid.
                But, because this is a change that is external to the code and therefore implicit,
                the associated shared state cache items do not become invalidated.
                In this case, the build process uses the cached items rather than running the
                task again.
                Obviously, these types of implicit changes can cause problems.
            </para>

            <para>
                To avoid these problems during the build, you need to understand the effects of any
                change you make.
                Note that any changes you make directly to a function automatically are factored into
                the checksum calculation and thus, will invalidate the associated area of sstate cache.
                You need to be aware of any implicit changes that are not obvious changes to the
                code and could affect the output of a given task.
                Once you are aware of such changes, you can take steps to invalidate the cache
                and force the tasks to run.
                The steps to take are as simple as changing function's comments in the source code.
                For example, to invalidate package shared state files, change the comment statements
                of <filename>do_package</filename> or the comments of one of the functions it calls.
                The change is purely cosmetic, but it causes the checksum to be recalculated and
                forces the task to be run again.
            </para>

            <note>
                For an example of a commit that makes a cosmetic change to invalidate
                a shared state, see this
                <ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/commit/meta/classes/package.bbclass?id=737f8bbb4f27b4837047cb9b4fbfe01dfde36d54'>commit</ulink>.
            </note>
        </section>
    </section>
</section>

<section id='x32'>
    <title>x32</title>

    <para>
        x32 is a processor-specific Application Binary Interface (psABI) for x86_64.
        An ABI defines the calling conventions between functions in a processing environment.
        The interface determines what registers are used and what the sizes are for various C data types.
    </para>

    <para>
        Some processing environments prefer using 32-bit applications even when running
        on Intel 64-bit platforms.
        Consider the i386 psABI, which is a very old 32-bit ABI for Intel 64-bit platforms.
        The i386 psABI does not provide efficient use and access of the Intel 64-bit processor resources,
        leaving the system underutilized.
        Now consider the x86_64 psABI.
        This ABI is newer and uses 64-bits for data sizes and program pointers.
        The extra bits increase the footprint size of the programs, libraries,
        and also increases the memory and file system size requirements.
        Executing under the x32 psABI enables user programs to utilize CPU and system resources
        more efficiently while keeping the memory footprint of the applications low.
        Extra bits are used for registers but not for addressing mechanisms.
    </para>

    <section id='support'>
        <title>Support</title>

        <para>
            While the x32 psABI specifications are not fully finalized, this Yocto Project
            release supports current development specifications of x32 psABI.
            As of this release of the Yocto Project, x32 psABI support exists as follows:
            <itemizedlist>
                <listitem><para>You can create packages and images in x32 psABI format on x86_64 architecture targets.
                    </para></listitem>
                <listitem><para>You can successfully build many recipes with the x32 toolchain.</para></listitem>
                <listitem><para>You can create and boot <filename>core-image-minimal</filename> and
                    <filename>core-image-sato</filename> images.</para></listitem>
            </itemizedlist>
        </para>
    </section>

    <section id='stabilizing-and-completing-x32'>
        <title>Stabilizing and Completing x32</title>

        <para>
            As of this Yocto Project release, the x32 psABI kernel and library
            interfaces specifications are not finalized.
        </para>

        <para>
            Future Plans for the x32 psABI in the Yocto Project include the following:
            <itemizedlist>
                <listitem><para>Enhance and fix the few remaining recipes so they
                    work with and support x32 toolchains.</para></listitem>
                <listitem><para>Enhance RPM Package Manager (RPM) support for x32 binaries.</para></listitem>
                <listitem><para>Support larger images.</para></listitem>
            </itemizedlist>
        </para>
    </section>

    <section id='using-x32-right-now'>
        <title>Using x32 Right Now</title>

        <para>
            Follow these steps to use the x32 spABI:
            <itemizedlist>
                <listitem><para>Enable the x32 psABI tuning file for <filename>x86_64</filename>
                    machines by editing the <filename>conf/local.conf</filename> like this:
                    <literallayout class='monospaced'>
      MACHINE = "qemux86-64"
      DEFAULTTUNE = "x86-64-x32"
      baselib = "${@d.getVar('BASE_LIB_tune-' + (d.getVar('DEFAULTTUNE', True) \
         or 'INVALID'), True) or 'lib'}"
      #MACHINE = "genericx86"
      #DEFAULTTUNE = "core2-64-x32"
                    </literallayout></para></listitem>
                <listitem><para>As usual, use BitBake to build an image that supports the x32 psABI.
                    Here is an example:
                    <literallayout class='monospaced'>
     $ bitbake core-image-sato
                    </literallayout></para></listitem>
                <listitem><para>As usual, run your image using QEMU:
                    <literallayout class='monospaced'>
     $ runqemu qemux86-64 core-image-sato
                    </literallayout></para></listitem>
            </itemizedlist>
        </para>
    </section>
</section>

<section id="wayland">
    <title>Wayland</title>

    <para>
        <ulink url='http://en.wikipedia.org/wiki/Wayland_(display_server_protocol)#Weston'>Wayland</ulink>
        is a computer display server protocol that when implemented
        provides a method for compositing window managers to communicate
        directly with applications and video hardware and expects them to
        communicate with input hardware using other libraries.
        Using Wayland with supporting targets can result in better control
        over graphics frame rendering than an application might otherwise
        achieve.
    </para>

    <para>
        The Yocto Project provides the Wayland protocol libraries and the
        reference Weston compositor as part of it release.
        This section describes what you need to do to implement Wayland and
        use the compositor when building an image for a supporting target.
    </para>

    <section id="wayland-support">
        <title>Support</title>

        <para>
            The Wayland protocol libraries and the reference Weston compositor
            ship as integrated packages in the <filename>meta</filename> layer
            of the
            <ulink url='&YOCTO_DOCS_DEV_URL;#source-directory'>Source Directory</ulink>.
            Specifically, you can find the recipes that build both Wayland
            and Weston at <filename>meta/recipes-graphics/wayland</filename>.
        </para>

        <para>
            You can build both the Wayland and Weston packages for use only
            with targets that accept the
            <ulink url='http://dri.freedesktop.org/wiki/'>Mesa 3D and Direct Rendering Infrastructure</ulink>,
            which is also known as Mesa DRI.
            This implies that you cannot build and use the packages if your
            target uses, for example, the
            <trademark class='registered'>Intel</trademark> Embedded Media and
            Graphics Driver (<trademark class='registered'>Intel</trademark>
            EMGD) that overrides Mesa DRI.
        </para>

        <note>
            Due to lack of EGL support, Weston 1.0.3 will not run directly on
            the emulated QEMU hardware.
            However, this version of Weston will run under X emulation without
            issues.
        </note>
    </section>

    <section id="enabling-wayland-in-an-image">
        <title>Enabling Wayland in an Image</title>

        <para>
            To enable Wayland, you need to enable it to be built and enable
            it to be included in the image.
        </para>

        <section id="enable-building">
            <title>Building</title>

            <para>
                To cause Mesa to build the <filename>wayland-egl</filename>
                platform and Weston to build Wayland with Kernel Mode
                Setting
                (<ulink url='https://wiki.archlinux.org/index.php/Kernel_Mode_Setting'>KMS</ulink>)
                support, include the "wayland" flag in the
                <link linkend="var-DISTRO_FEATURES"><filename>DISTRO_FEATURES</filename></link>
                statement in your <filename>local.conf</filename> file:
                <literallayout class='monospaced'>
     DISTRO_FEATURES_append = " wayland"
                </literallayout>
            </para>

            <note>
                If X11 has been enabled elsewhere, Weston will build Wayland
                with X11 support
            </note>
        </section>

        <section id="enable-installation-in-an-image">
            <title>Installing</title>

            <para>
                To install the Wayland feature into an image, you must
                include the following
                <link linkend='var-CORE_IMAGE_EXTRA_INSTALL'><filename>CORE_IMAGE_EXTRA_INSTALL</filename></link>
                statement in your <filename>local.conf</filename> file:
                <literallayout class='monospaced'>
     CORE_IMAGE_EXTRA_INSTALL += "wayland weston"
                </literallayout>
            </para>
        </section>
    </section>

    <section id="running-weston">
        <title>Running Weston</title>

        <para>
            To run Weston inside X11, enabling it as described earlier and
            building a Sato image is sufficient.
            If you are running your image under Sato, a Weston Launcher appears
            in the "Utility" category.
        </para>

        <para>
            Alternatively, you can run Weston through the command-line
            interpretor (CLI), which is better suited for development work.
            To run Weston under the CLI you need to do the following after
            your image is built:
            <orderedlist>
                <listitem><para>Run these commands to export
                    <filename>XDG_RUNTIME_DIR</filename>:
                    <literallayout class='monospaced'>
     mkdir -p /tmp/$USER-weston
     chmod 0700 /tmp/$USER-weston
     export XDG_RUNTIME_DIR=/tmp/$USER=weston
                    </literallayout></para></listitem>
                <listitem><para>Launch Weston in the shell:
                    <literallayout class='monospaced'>
     weston
                    </literallayout></para></listitem>
            </orderedlist>
        </para>
    </section>
</section>

<section id="licenses">
    <title>Licenses</title>

    <para>
        This section describes the mechanism by which the OpenEmbedded build system
        tracks changes to licensing text.
        The section also describes how to enable commercially licensed recipes,
        which by default are disabled.
    </para>

    <para>
        For information that can help you maintain compliance with various open
        source licensing during the lifecycle of the product, see the
        "<ulink url='&YOCTO_DOCS_DEV_URL;#maintaining-open-source-license-compliance-during-your-products-lifecycle'>Maintaining Open Source License Compliance During Your Project's Lifecycle</ulink>" section
        in the Yocto Project Development Manual.
    </para>

    <section id="usingpoky-configuring-LIC_FILES_CHKSUM">
        <title>Tracking License Changes</title>

        <para>
            The license of an upstream project might change in the future.
            In order to prevent these changes going unnoticed, the
            <filename><link linkend='var-LIC_FILES_CHKSUM'>LIC_FILES_CHKSUM</link></filename>
            variable tracks changes to the license text. The checksums are validated at the end of the
            configure step, and if the checksums do not match, the build will fail.
        </para>

        <section id="usingpoky-specifying-LIC_FILES_CHKSUM">
            <title>Specifying the <filename>LIC_FILES_CHKSUM</filename> Variable</title>

            <para>
                The <filename>LIC_FILES_CHKSUM</filename>
                variable contains checksums of the license text in the source code for the recipe.
                Following is an example of how to specify <filename>LIC_FILES_CHKSUM</filename>:
                <literallayout class='monospaced'>
     LIC_FILES_CHKSUM = "file://COPYING;md5=xxxx \
                         file://licfile1.txt;beginline=5;endline=29;md5=yyyy \
                         file://licfile2.txt;endline=50;md5=zzzz \
                         ..."
                </literallayout>
            </para>

            <para>
                The build system uses the
                <filename><link linkend='var-S'>S</link></filename> variable as
                the default directory used when searching files listed in
                <filename>LIC_FILES_CHKSUM</filename>.
                The previous example employs the default directory.
            </para>

            <para>
                Consider this next example:
                <literallayout class='monospaced'>
     LIC_FILES_CHKSUM = "file://src/ls.c;beginline=5;endline=16;\
                                         md5=bb14ed3c4cda583abc85401304b5cd4e"
     LIC_FILES_CHKSUM = "file://${WORKDIR}/license.html;md5=5c94767cedb5d6987c902ac850ded2c6"
                </literallayout>
            </para>

            <para>
                The first line locates a file in
                <filename>${S}/src/ls.c</filename>.
                The second line refers to a file in
                <filename><link linkend='var-WORKDIR'>WORKDIR</link></filename>.
            </para>
            <para>
                Note that <filename>LIC_FILES_CHKSUM</filename> variable is
                mandatory for all recipes, unless the
                <filename>LICENSE</filename> variable is set to "CLOSED".
            </para>
        </section>

        <section id="usingpoky-LIC_FILES_CHKSUM-explanation-of-syntax">
            <title>Explanation of Syntax</title>
            <para>
                As mentioned in the previous section, the
                <filename>LIC_FILES_CHKSUM</filename> variable lists all the
                important files that contain the license text for the source code.
                It is possible to specify a checksum for an entire file, or a specific section of a
                file (specified by beginning and ending line numbers with the "beginline" and "endline"
                parameters, respectively).
                The latter is useful for source files with a license notice header,
                README documents, and so forth.
                If you do not use the "beginline" parameter, then it is assumed that the text begins on the
                first line of the file.
                Similarly, if you do not use the "endline" parameter, it is assumed that the license text
                ends with the last line of the file.
            </para>

            <para>
                The "md5" parameter stores the md5 checksum of the license text.
                If the license text changes in any way as compared to this parameter
                then a mismatch occurs.
                This mismatch triggers a build failure and notifies the developer.
                Notification allows the developer to review and address the license text changes.
                Also note that if a mismatch occurs during the build, the correct md5
                checksum is placed in the build log and can be easily copied to the recipe.
            </para>

            <para>
                There is no limit to how many files you can specify using the
                <filename>LIC_FILES_CHKSUM</filename> variable.
                Generally, however, every project requires a few specifications for license tracking.
                Many projects have a "COPYING" file that stores the license information for all the source
                code files.
                This practice allows you to just track the "COPYING" file as long as it is kept up to date.
            </para>

            <tip>
                If you specify an empty or invalid "md5" parameter, BitBake returns an md5 mis-match
                error and displays the correct "md5" parameter value during the build.
                The correct parameter is also captured in the build log.
            </tip>

            <tip>
                If the whole file contains only license text, you do not need to use the "beginline" and
                "endline" parameters.
            </tip>
        </section>
    </section>

    <section id="enabling-commercially-licensed-recipes">
        <title>Enabling Commercially Licensed Recipes</title>

        <para>
            By default, the OpenEmbedded build system disables
            components that have commercial or other special licensing
            requirements.
            Such requirements are defined on a
            recipe-by-recipe basis through the <filename>LICENSE_FLAGS</filename> variable
            definition in the affected recipe.
            For instance, the
            <filename>$HOME/poky/meta/recipes-multimedia/gstreamer/gst-plugins-ugly</filename>
            recipe contains the following statement:
            <literallayout class='monospaced'>
     LICENSE_FLAGS = "commercial"
            </literallayout>
            Here is a slightly more complicated example that contains both an
            explicit recipe name and version (after variable expansion):
            <literallayout class='monospaced'>
     LICENSE_FLAGS = "license_${PN}_${PV}"
            </literallayout>
	        In order for a component restricted by a <filename>LICENSE_FLAGS</filename>
	        definition to be enabled and included in an image, it
	        needs to have a matching entry in the global
	        <filename>LICENSE_FLAGS_WHITELIST</filename> variable, which is a variable
	        typically defined in your <filename>local.conf</filename> file.
            For example, to enable
	        the <filename>$HOME/poky/meta/recipes-multimedia/gstreamer/gst-plugins-ugly</filename>
	        package, you could add either the string
	        "commercial_gst-plugins-ugly" or the more general string
	        "commercial" to <filename>LICENSE_FLAGS_WHITELIST</filename>.
            See the
            "<link linkend='license-flag-matching'>License Flag Matching</link>" section
            for a full explanation of how <filename>LICENSE_FLAGS</filename> matching works.
            Here is the example:
            <literallayout class='monospaced'>
     LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly"
            </literallayout>
	        Likewise, to additionally enable the package built from the recipe containing
	        <filename>LICENSE_FLAGS = "license_${PN}_${PV}"</filename>, and assuming
	        that the actual recipe name was <filename>emgd_1.10.bb</filename>,
	        the following string would enable that package as well as
	        the original <filename>gst-plugins-ugly</filename> package:
            <literallayout class='monospaced'>
     LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly license_emgd_1.10"
            </literallayout>
	        As a convenience, you do not need to specify the complete license string
	        in the whitelist for every package.
            you can use an abbreviated form, which consists
	        of just the first portion or portions of the license string before
	        the initial underscore character or characters.
            A partial string will match
	        any license that contains the given string as the first
	        portion of its license.
            For example, the following
	        whitelist string will also match both of the packages
	        previously mentioned as well as any other packages that have
	        licenses starting with "commercial" or "license".
            <literallayout class='monospaced'>
     LICENSE_FLAGS_WHITELIST = "commercial license"
            </literallayout>
        </para>

        <section id="license-flag-matching">
            <title>License Flag Matching</title>

            <para>
		        License flag matching allows you to control what recipes the
                OpenEmbedded build system includes in the build.
                Fundamentally, the build system attempts to match
                <filename>LICENSE_FLAG</filename> strings found in
                recipes against <filename>LICENSE_FLAGS_WHITELIST</filename>
                strings found in the whitelist.
                A match, causes the build system to include a recipe in the
                build, while failure to find a match causes the build system to
                exclude a recipe.
            </para>

            <para>
                In general, license flag matching is simple.
                However, understanding some concepts will help you
                correctly and effectively use matching.
            </para>

            <para>
                Before a flag
                defined by a particular recipe is tested against the
                contents of the whitelist, the expanded string
                <filename>_${PN}</filename> is appended to the flag.
                This expansion makes each <filename>LICENSE_FLAGS</filename>
                value recipe-specific.
                After expansion, the string is then matched against the
                whitelist.
                Thus, specifying
                <filename>LICENSE_FLAGS = "commercial"</filename>
                in recipe "foo", for example, results in the string
                <filename>"commercial_foo"</filename>.
                And, to create a match, that string must appear in the
                whitelist.
            </para>

            <para>
                Judicious use of the <filename>LICENSE_FLAGS</filename>
                strings and the contents of the
                <filename>LICENSE_FLAGS_WHITELIST</filename> variable
                allows you a lot of flexibility for including or excluding
                recipes based on licensing.
                For example, you can broaden the matching capabilities by
                using license flags string subsets in the whitelist.
                <note>When using a string subset, be sure to use the part of
                    the expanded string that precedes the appended underscore
                    character (e.g. <filename>usethispart_1.3</filename>,
                    <filename>usethispart_1.4</filename>, and so forth).
                </note>
                For example, simply specifying the string "commercial" in
                the whitelist matches any expanded
                <filename>LICENSE_FLAGS</filename> definition that starts with
                the string "commercial" such as "commercial_foo" and
                "commercial_bar", which are the strings the build system
                automatically generates for hypothetical recipes named
                "foo" and "bar" assuming those recipes simply specify the
                following:
                <literallayout class='monospaced'>
     LICENSE_FLAGS = "commercial"
                </literallayout>
                Thus, you can choose to exhaustively
                enumerate each license flag in the whitelist and
                allow only specific recipes into the image, or
                you can use a string subset that causes a broader range of
                matches to allow a range of recipes into the image.
            </para>

            <para>
                This scheme works even if the
                <filename>LICENSE_FLAG</filename> string already
                has <filename>_${PN}</filename> appended.
                For example, the build system turns the license flag
                "commercial_1.2_foo" into "commercial_1.2_foo_foo" and would
                match both the general "commercial" and the specific
                "commercial_1.2_foo" strings found in the whitelist, as
                expected.
            </para>

            <para>
                Here are some other scenarios:
                <itemizedlist>
                    <listitem><para>You can specify a versioned string in the
                        recipe such as "commercial_foo_1.2" in a "foo" recipe.
                        The build system expands this string to
                        "commercial_foo_1.2_foo".
                        Combine this license flag with a whitelist that has
                        the string "commercial" and you match the flag along
                        with any other flag that starts with the string
                        "commercial".</para></listitem>
                    <listitem><para>Under the same circumstances, you can
                        use "commercial_foo" in the whitelist and the
                        build system not only matches "commercial_foo_1.2" but
                        also matches any license flag with the string
                        "commercial_foo", regardless of the version.
                        </para></listitem>
                    <listitem><para>You can be very specific and use both the
                        package and version parts in the whitelist (e.g.
                        "commercial_foo_1.2") to specifically match a
                        versioned recipe.</para></listitem>
                </itemizedlist>
            </para>
        </section>

        <section id="other-variables-related-to-commercial-licenses">
            <title>Other Variables Related to Commercial Licenses</title>

            <para>
                Other helpful variables related to commercial
                license handling exist and are defined in the
                <filename>$HOME/poky/meta/conf/distro/include/default-distrovars.inc</filename> file:
                <literallayout class='monospaced'>
     COMMERCIAL_AUDIO_PLUGINS ?= ""
     COMMERCIAL_VIDEO_PLUGINS ?= ""
     COMMERCIAL_QT = ""
                </literallayout>
                If you want to enable these components, you can do so by making sure you have
                statements similar to the following
                in your <filename>local.conf</filename> configuration file:
                <literallayout class='monospaced'>
     COMMERCIAL_AUDIO_PLUGINS = "gst-plugins-ugly-mad \
        gst-plugins-ugly-mpegaudioparse"
     COMMERCIAL_VIDEO_PLUGINS = "gst-plugins-ugly-mpeg2dec \
        gst-plugins-ugly-mpegstream gst-plugins-bad-mpegvideoparse"
     COMMERCIAL_QT ?= "qmmp"
     LICENSE_FLAGS_WHITELIST = "commercial_gst-plugins-ugly commercial_gst-plugins-bad commercial_qmmp"
                </literallayout>
                Of course, you could also create a matching whitelist
                for those components using the more general "commercial"
                in the whitelist, but that would also enable all the
                other packages with <filename>LICENSE_FLAGS</filename> containing
                "commercial", which you may or may not want:
                <literallayout class='monospaced'>
     LICENSE_FLAGS_WHITELIST = "commercial"
                </literallayout>
            </para>

            <para>
                Specifying audio and video plug-ins as part of the
                <filename>COMMERCIAL_AUDIO_PLUGINS</filename> and
                <filename>COMMERCIAL_VIDEO_PLUGINS</filename> statements
                or commercial Qt components as part of
                the <filename>COMMERCIAL_QT</filename> statement (along
                with the enabling <filename>LICENSE_FLAGS_WHITELIST</filename>) includes the
                plug-ins or components into built images, thus adding
                support for media formats or components.
            </para>
        </section>
    </section>
</section>
</chapter>
<!--
vim: expandtab tw=80 ts=4
-->