summaryrefslogtreecommitdiffstats
path: root/meta/recipes-devtools/go/go-1.14/CVE-2023-45287.patch
blob: 90a74255dbb8abccdc99667edf0c5310387dcaaa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
From 8a81fdf165facdcefa06531de5af98a4db343035 Mon Sep 17 00:00:00 2001
From: =?UTF-8?q?L=C3=BAc=C3=A1s=20Meier?= <cronokirby@gmail.com>
Date: Tue, 8 Jun 2021 21:36:06 +0200
Subject: [PATCH] crypto/rsa: replace big.Int for encryption and decryption

Infamously, big.Int does not provide constant-time arithmetic, making
its use in cryptographic code quite tricky. RSA uses big.Int
pervasively, in its public API, for key generation, precomputation, and
for encryption and decryption. This is a known problem. One mitigation,
blinding, is already in place during decryption. This helps mitigate the
very leaky exponentiation operation. Because big.Int is fundamentally
not constant-time, it's unfortunately difficult to guarantee that
mitigations like these are completely effective.

This patch removes the use of big.Int for encryption and decryption,
replacing it with an internal nat type instead. Signing and verification
are also affected, because they depend on encryption and decryption.

Overall, this patch degrades performance by 55% for private key
operations, and 4-5x for (much faster) public key operations.
(Signatures do both, so the slowdown is worse than decryption.)

name                    old time/op  new time/op    delta
DecryptPKCS1v15/2048-8  1.50ms ± 0%    2.34ms ± 0%    +56.44%  (p=0.000 n=8+10)
DecryptPKCS1v15/3072-8  4.40ms ± 0%    6.79ms ± 0%    +54.33%  (p=0.000 n=10+9)
DecryptPKCS1v15/4096-8  9.31ms ± 0%   15.14ms ± 0%    +62.60%  (p=0.000 n=10+10)
EncryptPKCS1v15/2048-8  8.16µs ± 0%  355.58µs ± 0%  +4258.90%  (p=0.000 n=10+9)
DecryptOAEP/2048-8      1.50ms ± 0%    2.34ms ± 0%    +55.68%  (p=0.000 n=10+9)
EncryptOAEP/2048-8      8.51µs ± 0%  355.95µs ± 0%  +4082.75%  (p=0.000 n=10+9)
SignPKCS1v15/2048-8     1.51ms ± 0%    2.69ms ± 0%    +77.94%  (p=0.000 n=10+10)
VerifyPKCS1v15/2048-8   7.25µs ± 0%  354.34µs ± 0%  +4789.52%  (p=0.000 n=9+9)
SignPSS/2048-8          1.51ms ± 0%    2.70ms ± 0%    +78.80%  (p=0.000 n=9+10)
VerifyPSS/2048-8        8.27µs ± 1%  355.65µs ± 0%  +4199.39%  (p=0.000 n=10+10)

Keep in mind that this is without any assembly at all, and that further
improvements are likely possible. I think having a review of the logic
and the cryptography would be a good idea at this stage, before we
complicate the code too much through optimization.

The bulk of the work is in nat.go. This introduces two new types: nat,
representing natural numbers, and modulus, representing moduli used in
modular arithmetic.

A nat has an "announced size", which may be larger than its "true size",
the number of bits needed to represent this number. Operations on a nat
will only ever leak its announced size, never its true size, or other
information about its value. The size of a nat is always clear based on
how its value is set. For example, x.mod(y, m) will make the announced
size of x match that of m, since x is reduced modulo m.

Operations assume that the announced size of the operands match what's
expected (with a few exceptions). For example, x.modAdd(y, m) assumes
that x and y have the same announced size as m, and that they're reduced
modulo m.

Nats are represented over unsatured bits.UintSize - 1 bit limbs. This
means that we can't reuse the assembly routines for big.Int, which use
saturated bits.UintSize limbs. The advantage of unsaturated limbs is
that it makes Montgomery multiplication faster, by needing fewer
registers in a hot loop. This makes exponentiation faster, which
consists of many Montgomery multiplications.

Moduli use nat internally. Unlike nat, the true size of a modulus always
matches its announced size. When creating a modulus, any zero padding is
removed. Moduli will also precompute constants when created, which is
another reason why having a separate type is desirable.

Updates #20654

Co-authored-by: Filippo Valsorda <filippo@golang.org>
Change-Id: I73b61f87d58ab912e80a9644e255d552cbadcced
Reviewed-on: https://go-review.googlesource.com/c/go/+/326012
Run-TryBot: Filippo Valsorda <filippo@golang.org>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Roland Shoemaker <roland@golang.org>
Reviewed-by: Joedian Reid <joedian@golang.org>

Upstream-Status: Backport [https://github.com/golang/go/commit/8a81fdf165facdcefa06531de5af98a4db343035]
CVE: CVE-2023-45287
Signed-off-by: Vijay Anusuri <vanusuri@mvista.com>
---
 src/crypto/rsa/example_test.go |  21 +-
 src/crypto/rsa/nat.go          | 626 +++++++++++++++++++++++++++++++++
 src/crypto/rsa/nat_test.go     | 384 ++++++++++++++++++++
 src/crypto/rsa/pkcs1v15.go     |  47 +--
 src/crypto/rsa/pss.go          |  50 ++-
 src/crypto/rsa/pss_test.go     |  10 +-
 src/crypto/rsa/rsa.go          | 174 ++++-----
 7 files changed, 1143 insertions(+), 169 deletions(-)
 create mode 100644 src/crypto/rsa/nat.go
 create mode 100644 src/crypto/rsa/nat_test.go

diff --git a/src/crypto/rsa/example_test.go b/src/crypto/rsa/example_test.go
index 1435b70..1963609 100644
--- a/src/crypto/rsa/example_test.go
+++ b/src/crypto/rsa/example_test.go
@@ -12,7 +12,6 @@ import (
 	"crypto/sha256"
 	"encoding/hex"
 	"fmt"
-	"io"
 	"os"
 )
 
@@ -36,21 +35,17 @@ import (
 // a buffer that contains a random key. Thus, if the RSA result isn't
 // well-formed, the implementation uses a random key in constant time.
 func ExampleDecryptPKCS1v15SessionKey() {
-	// crypto/rand.Reader is a good source of entropy for blinding the RSA
-	// operation.
-	rng := rand.Reader
-
 	// The hybrid scheme should use at least a 16-byte symmetric key. Here
 	// we read the random key that will be used if the RSA decryption isn't
 	// well-formed.
 	key := make([]byte, 32)
-	if _, err := io.ReadFull(rng, key); err != nil {
+	if _, err := rand.Read(key); err != nil {
 		panic("RNG failure")
 	}
 
 	rsaCiphertext, _ := hex.DecodeString("aabbccddeeff")
 
-	if err := DecryptPKCS1v15SessionKey(rng, rsaPrivateKey, rsaCiphertext, key); err != nil {
+	if err := DecryptPKCS1v15SessionKey(nil, rsaPrivateKey, rsaCiphertext, key); err != nil {
 		// Any errors that result will be “public” – meaning that they
 		// can be determined without any secret information. (For
 		// instance, if the length of key is impossible given the RSA
@@ -86,10 +81,6 @@ func ExampleDecryptPKCS1v15SessionKey() {
 }
 
 func ExampleSignPKCS1v15() {
-	// crypto/rand.Reader is a good source of entropy for blinding the RSA
-	// operation.
-	rng := rand.Reader
-
 	message := []byte("message to be signed")
 
 	// Only small messages can be signed directly; thus the hash of a
@@ -99,7 +90,7 @@ func ExampleSignPKCS1v15() {
 	// of writing (2016).
 	hashed := sha256.Sum256(message)
 
-	signature, err := SignPKCS1v15(rng, rsaPrivateKey, crypto.SHA256, hashed[:])
+	signature, err := SignPKCS1v15(nil, rsaPrivateKey, crypto.SHA256, hashed[:])
 	if err != nil {
 		fmt.Fprintf(os.Stderr, "Error from signing: %s\n", err)
 		return
@@ -151,11 +142,7 @@ func ExampleDecryptOAEP() {
 	ciphertext, _ := hex.DecodeString("4d1ee10e8f286390258c51a5e80802844c3e6358ad6690b7285218a7c7ed7fc3a4c7b950fbd04d4b0239cc060dcc7065ca6f84c1756deb71ca5685cadbb82be025e16449b905c568a19c088a1abfad54bf7ecc67a7df39943ec511091a34c0f2348d04e058fcff4d55644de3cd1d580791d4524b92f3e91695582e6e340a1c50b6c6d78e80b4e42c5b4d45e479b492de42bbd39cc642ebb80226bb5200020d501b24a37bcc2ec7f34e596b4fd6b063de4858dbf5a4e3dd18e262eda0ec2d19dbd8e890d672b63d368768360b20c0b6b8592a438fa275e5fa7f60bef0dd39673fd3989cc54d2cb80c08fcd19dacbc265ee1c6014616b0e04ea0328c2a04e73460")
 	label := []byte("orders")
 
-	// crypto/rand.Reader is a good source of entropy for blinding the RSA
-	// operation.
-	rng := rand.Reader
-
-	plaintext, err := DecryptOAEP(sha256.New(), rng, test2048Key, ciphertext, label)
+	plaintext, err := DecryptOAEP(sha256.New(), nil, test2048Key, ciphertext, label)
 	if err != nil {
 		fmt.Fprintf(os.Stderr, "Error from decryption: %s\n", err)
 		return
diff --git a/src/crypto/rsa/nat.go b/src/crypto/rsa/nat.go
new file mode 100644
index 0000000..da521c2
--- /dev/null
+++ b/src/crypto/rsa/nat.go
@@ -0,0 +1,626 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+	"math/big"
+	"math/bits"
+)
+
+const (
+	// _W is the number of bits we use for our limbs.
+	_W = bits.UintSize - 1
+	// _MASK selects _W bits from a full machine word.
+	_MASK = (1 << _W) - 1
+)
+
+// choice represents a constant-time boolean. The value of choice is always
+// either 1 or 0. We use an int instead of bool in order to make decisions in
+// constant time by turning it into a mask.
+type choice uint
+
+func not(c choice) choice { return 1 ^ c }
+
+const yes = choice(1)
+const no = choice(0)
+
+// ctSelect returns x if on == 1, and y if on == 0. The execution time of this
+// function does not depend on its inputs. If on is any value besides 1 or 0,
+// the result is undefined.
+func ctSelect(on choice, x, y uint) uint {
+	// When on == 1, mask is 0b111..., otherwise mask is 0b000...
+	mask := -uint(on)
+	// When mask is all zeros, we just have y, otherwise, y cancels with itself.
+	return y ^ (mask & (y ^ x))
+}
+
+// ctEq returns 1 if x == y, and 0 otherwise. The execution time of this
+// function does not depend on its inputs.
+func ctEq(x, y uint) choice {
+	// If x != y, then either x - y or y - x will generate a carry.
+	_, c1 := bits.Sub(x, y, 0)
+	_, c2 := bits.Sub(y, x, 0)
+	return not(choice(c1 | c2))
+}
+
+// ctGeq returns 1 if x >= y, and 0 otherwise. The execution time of this
+// function does not depend on its inputs.
+func ctGeq(x, y uint) choice {
+	// If x < y, then x - y generates a carry.
+	_, carry := bits.Sub(x, y, 0)
+	return not(choice(carry))
+}
+
+// nat represents an arbitrary natural number
+//
+// Each nat has an announced length, which is the number of limbs it has stored.
+// Operations on this number are allowed to leak this length, but will not leak
+// any information about the values contained in those limbs.
+type nat struct {
+	// limbs is a little-endian representation in base 2^W with
+	// W = bits.UintSize - 1. The top bit is always unset between operations.
+	//
+	// The top bit is left unset to optimize Montgomery multiplication, in the
+	// inner loop of exponentiation. Using fully saturated limbs would leave us
+	// working with 129-bit numbers on 64-bit platforms, wasting a lot of space,
+	// and thus time.
+	limbs []uint
+}
+
+// expand expands x to n limbs, leaving its value unchanged.
+func (x *nat) expand(n int) *nat {
+	for len(x.limbs) > n {
+		if x.limbs[len(x.limbs)-1] != 0 {
+			panic("rsa: internal error: shrinking nat")
+		}
+		x.limbs = x.limbs[:len(x.limbs)-1]
+	}
+	if cap(x.limbs) < n {
+		newLimbs := make([]uint, n)
+		copy(newLimbs, x.limbs)
+		x.limbs = newLimbs
+		return x
+	}
+	extraLimbs := x.limbs[len(x.limbs):n]
+	for i := range extraLimbs {
+		extraLimbs[i] = 0
+	}
+	x.limbs = x.limbs[:n]
+	return x
+}
+
+// reset returns a zero nat of n limbs, reusing x's storage if n <= cap(x.limbs).
+func (x *nat) reset(n int) *nat {
+	if cap(x.limbs) < n {
+		x.limbs = make([]uint, n)
+		return x
+	}
+	for i := range x.limbs {
+		x.limbs[i] = 0
+	}
+	x.limbs = x.limbs[:n]
+	return x
+}
+
+// clone returns a new nat, with the same value and announced length as x.
+func (x *nat) clone() *nat {
+	out := &nat{make([]uint, len(x.limbs))}
+	copy(out.limbs, x.limbs)
+	return out
+}
+
+// natFromBig creates a new natural number from a big.Int.
+//
+// The announced length of the resulting nat is based on the actual bit size of
+// the input, ignoring leading zeroes.
+func natFromBig(x *big.Int) *nat {
+	xLimbs := x.Bits()
+	bitSize := bigBitLen(x)
+	requiredLimbs := (bitSize + _W - 1) / _W
+
+	out := &nat{make([]uint, requiredLimbs)}
+	outI := 0
+	shift := 0
+	for i := range xLimbs {
+		xi := uint(xLimbs[i])
+		out.limbs[outI] |= (xi << shift) & _MASK
+		outI++
+		if outI == requiredLimbs {
+			return out
+		}
+		out.limbs[outI] = xi >> (_W - shift)
+		shift++ // this assumes bits.UintSize - _W = 1
+		if shift == _W {
+			shift = 0
+			outI++
+		}
+	}
+	return out
+}
+
+// fillBytes sets bytes to x as a zero-extended big-endian byte slice.
+//
+// If bytes is not long enough to contain the number or at least len(x.limbs)-1
+// limbs, or has zero length, fillBytes will panic.
+func (x *nat) fillBytes(bytes []byte) []byte {
+	if len(bytes) == 0 {
+		panic("nat: fillBytes invoked with too small buffer")
+	}
+	for i := range bytes {
+		bytes[i] = 0
+	}
+	shift := 0
+	outI := len(bytes) - 1
+	for i, limb := range x.limbs {
+		remainingBits := _W
+		for remainingBits >= 8 {
+			bytes[outI] |= byte(limb) << shift
+			consumed := 8 - shift
+			limb >>= consumed
+			remainingBits -= consumed
+			shift = 0
+			outI--
+			if outI < 0 {
+				if limb != 0 || i < len(x.limbs)-1 {
+					panic("nat: fillBytes invoked with too small buffer")
+				}
+				return bytes
+			}
+		}
+		bytes[outI] = byte(limb)
+		shift = remainingBits
+	}
+	return bytes
+}
+
+// natFromBytes converts a slice of big-endian bytes into a nat.
+//
+// The announced length of the output depends on the length of bytes. Unlike
+// big.Int, creating a nat will not remove leading zeros.
+func natFromBytes(bytes []byte) *nat {
+	bitSize := len(bytes) * 8
+	requiredLimbs := (bitSize + _W - 1) / _W
+
+	out := &nat{make([]uint, requiredLimbs)}
+	outI := 0
+	shift := 0
+	for i := len(bytes) - 1; i >= 0; i-- {
+		bi := bytes[i]
+		out.limbs[outI] |= uint(bi) << shift
+		shift += 8
+		if shift >= _W {
+			shift -= _W
+			out.limbs[outI] &= _MASK
+			outI++
+			if shift > 0 {
+				out.limbs[outI] = uint(bi) >> (8 - shift)
+			}
+		}
+	}
+	return out
+}
+
+// cmpEq returns 1 if x == y, and 0 otherwise.
+//
+// Both operands must have the same announced length.
+func (x *nat) cmpEq(y *nat) choice {
+	// Eliminate bounds checks in the loop.
+	size := len(x.limbs)
+	xLimbs := x.limbs[:size]
+	yLimbs := y.limbs[:size]
+
+	equal := yes
+	for i := 0; i < size; i++ {
+		equal &= ctEq(xLimbs[i], yLimbs[i])
+	}
+	return equal
+}
+
+// cmpGeq returns 1 if x >= y, and 0 otherwise.
+//
+// Both operands must have the same announced length.
+func (x *nat) cmpGeq(y *nat) choice {
+	// Eliminate bounds checks in the loop.
+	size := len(x.limbs)
+	xLimbs := x.limbs[:size]
+	yLimbs := y.limbs[:size]
+
+	var c uint
+	for i := 0; i < size; i++ {
+		c = (xLimbs[i] - yLimbs[i] - c) >> _W
+	}
+	// If there was a carry, then subtracting y underflowed, so
+	// x is not greater than or equal to y.
+	return not(choice(c))
+}
+
+// assign sets x <- y if on == 1, and does nothing otherwise.
+//
+// Both operands must have the same announced length.
+func (x *nat) assign(on choice, y *nat) *nat {
+	// Eliminate bounds checks in the loop.
+	size := len(x.limbs)
+	xLimbs := x.limbs[:size]
+	yLimbs := y.limbs[:size]
+
+	for i := 0; i < size; i++ {
+		xLimbs[i] = ctSelect(on, yLimbs[i], xLimbs[i])
+	}
+	return x
+}
+
+// add computes x += y if on == 1, and does nothing otherwise. It returns the
+// carry of the addition regardless of on.
+//
+// Both operands must have the same announced length.
+func (x *nat) add(on choice, y *nat) (c uint) {
+	// Eliminate bounds checks in the loop.
+	size := len(x.limbs)
+	xLimbs := x.limbs[:size]
+	yLimbs := y.limbs[:size]
+
+	for i := 0; i < size; i++ {
+		res := xLimbs[i] + yLimbs[i] + c
+		xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i])
+		c = res >> _W
+	}
+	return
+}
+
+// sub computes x -= y if on == 1, and does nothing otherwise. It returns the
+// borrow of the subtraction regardless of on.
+//
+// Both operands must have the same announced length.
+func (x *nat) sub(on choice, y *nat) (c uint) {
+	// Eliminate bounds checks in the loop.
+	size := len(x.limbs)
+	xLimbs := x.limbs[:size]
+	yLimbs := y.limbs[:size]
+
+	for i := 0; i < size; i++ {
+		res := xLimbs[i] - yLimbs[i] - c
+		xLimbs[i] = ctSelect(on, res&_MASK, xLimbs[i])
+		c = res >> _W
+	}
+	return
+}
+
+// modulus is used for modular arithmetic, precomputing relevant constants.
+//
+// Moduli are assumed to be odd numbers. Moduli can also leak the exact
+// number of bits needed to store their value, and are stored without padding.
+//
+// Their actual value is still kept secret.
+type modulus struct {
+	// The underlying natural number for this modulus.
+	//
+	// This will be stored without any padding, and shouldn't alias with any
+	// other natural number being used.
+	nat     *nat
+	leading int  // number of leading zeros in the modulus
+	m0inv   uint // -nat.limbs[0]⁻¹ mod _W
+}
+
+// minusInverseModW computes -x⁻¹ mod _W with x odd.
+//
+// This operation is used to precompute a constant involved in Montgomery
+// multiplication.
+func minusInverseModW(x uint) uint {
+	// Every iteration of this loop doubles the least-significant bits of
+	// correct inverse in y. The first three bits are already correct (1⁻¹ = 1,
+	// 3⁻¹ = 3, 5⁻¹ = 5, and 7⁻¹ = 7 mod 8), so doubling five times is enough
+	// for 61 bits (and wastes only one iteration for 31 bits).
+	//
+	// See https://crypto.stackexchange.com/a/47496.
+	y := x
+	for i := 0; i < 5; i++ {
+		y = y * (2 - x*y)
+	}
+	return (1 << _W) - (y & _MASK)
+}
+
+// modulusFromNat creates a new modulus from a nat.
+//
+// The nat should be odd, nonzero, and the number of significant bits in the
+// number should be leakable. The nat shouldn't be reused.
+func modulusFromNat(nat *nat) *modulus {
+	m := &modulus{}
+	m.nat = nat
+	size := len(m.nat.limbs)
+	for m.nat.limbs[size-1] == 0 {
+		size--
+	}
+	m.nat.limbs = m.nat.limbs[:size]
+	m.leading = _W - bitLen(m.nat.limbs[size-1])
+	m.m0inv = minusInverseModW(m.nat.limbs[0])
+	return m
+}
+
+// bitLen is a version of bits.Len that only leaks the bit length of n, but not
+// its value. bits.Len and bits.LeadingZeros use a lookup table for the
+// low-order bits on some architectures.
+func bitLen(n uint) int {
+	var len int
+	// We assume, here and elsewhere, that comparison to zero is constant time
+	// with respect to different non-zero values.
+	for n != 0 {
+		len++
+		n >>= 1
+	}
+	return len
+}
+
+// bigBitLen is a version of big.Int.BitLen that only leaks the bit length of x,
+// but not its value. big.Int.BitLen uses bits.Len.
+func bigBitLen(x *big.Int) int {
+	xLimbs := x.Bits()
+	fullLimbs := len(xLimbs) - 1
+	topLimb := uint(xLimbs[len(xLimbs)-1])
+	return fullLimbs*bits.UintSize + bitLen(topLimb)
+}
+
+// modulusSize returns the size of m in bytes.
+func modulusSize(m *modulus) int {
+	bits := len(m.nat.limbs)*_W - int(m.leading)
+	return (bits + 7) / 8
+}
+
+// shiftIn calculates x = x << _W + y mod m.
+//
+// This assumes that x is already reduced mod m, and that y < 2^_W.
+func (x *nat) shiftIn(y uint, m *modulus) *nat {
+	d := new(nat).resetFor(m)
+
+	// Eliminate bounds checks in the loop.
+	size := len(m.nat.limbs)
+	xLimbs := x.limbs[:size]
+	dLimbs := d.limbs[:size]
+	mLimbs := m.nat.limbs[:size]
+
+	// Each iteration of this loop computes x = 2x + b mod m, where b is a bit
+	// from y. Effectively, it left-shifts x and adds y one bit at a time,
+	// reducing it every time.
+	//
+	// To do the reduction, each iteration computes both 2x + b and 2x + b - m.
+	// The next iteration (and finally the return line) will use either result
+	// based on whether the subtraction underflowed.
+	needSubtraction := no
+	for i := _W - 1; i >= 0; i-- {
+		carry := (y >> i) & 1
+		var borrow uint
+		for i := 0; i < size; i++ {
+			l := ctSelect(needSubtraction, dLimbs[i], xLimbs[i])
+
+			res := l<<1 + carry
+			xLimbs[i] = res & _MASK
+			carry = res >> _W
+
+			res = xLimbs[i] - mLimbs[i] - borrow
+			dLimbs[i] = res & _MASK
+			borrow = res >> _W
+		}
+		// See modAdd for how carry (aka overflow), borrow (aka underflow), and
+		// needSubtraction relate.
+		needSubtraction = ctEq(carry, borrow)
+	}
+	return x.assign(needSubtraction, d)
+}
+
+// mod calculates out = x mod m.
+//
+// This works regardless how large the value of x is.
+//
+// The output will be resized to the size of m and overwritten.
+func (out *nat) mod(x *nat, m *modulus) *nat {
+	out.resetFor(m)
+	// Working our way from the most significant to the least significant limb,
+	// we can insert each limb at the least significant position, shifting all
+	// previous limbs left by _W. This way each limb will get shifted by the
+	// correct number of bits. We can insert at least N - 1 limbs without
+	// overflowing m. After that, we need to reduce every time we shift.
+	i := len(x.limbs) - 1
+	// For the first N - 1 limbs we can skip the actual shifting and position
+	// them at the shifted position, which starts at min(N - 2, i).
+	start := len(m.nat.limbs) - 2
+	if i < start {
+		start = i
+	}
+	for j := start; j >= 0; j-- {
+		out.limbs[j] = x.limbs[i]
+		i--
+	}
+	// We shift in the remaining limbs, reducing modulo m each time.
+	for i >= 0 {
+		out.shiftIn(x.limbs[i], m)
+		i--
+	}
+	return out
+}
+
+// expandFor ensures out has the right size to work with operations modulo m.
+//
+// This assumes that out has as many or fewer limbs than m, or that the extra
+// limbs are all zero (which may happen when decoding a value that has leading
+// zeroes in its bytes representation that spill over the limb threshold).
+func (out *nat) expandFor(m *modulus) *nat {
+	return out.expand(len(m.nat.limbs))
+}
+
+// resetFor ensures out has the right size to work with operations modulo m.
+//
+// out is zeroed and may start at any size.
+func (out *nat) resetFor(m *modulus) *nat {
+	return out.reset(len(m.nat.limbs))
+}
+
+// modSub computes x = x - y mod m.
+//
+// The length of both operands must be the same as the modulus. Both operands
+// must already be reduced modulo m.
+func (x *nat) modSub(y *nat, m *modulus) *nat {
+	underflow := x.sub(yes, y)
+	// If the subtraction underflowed, add m.
+	x.add(choice(underflow), m.nat)
+	return x
+}
+
+// modAdd computes x = x + y mod m.
+//
+// The length of both operands must be the same as the modulus. Both operands
+// must already be reduced modulo m.
+func (x *nat) modAdd(y *nat, m *modulus) *nat {
+	overflow := x.add(yes, y)
+	underflow := not(x.cmpGeq(m.nat)) // x < m
+
+	// Three cases are possible:
+	//
+	//   - overflow = 0, underflow = 0
+	//
+	// In this case, addition fits in our limbs, but we can still subtract away
+	// m without an underflow, so we need to perform the subtraction to reduce
+	// our result.
+	//
+	//   - overflow = 0, underflow = 1
+	//
+	// The addition fits in our limbs, but we can't subtract m without
+	// underflowing. The result is already reduced.
+	//
+	//   - overflow = 1, underflow = 1
+	//
+	// The addition does not fit in our limbs, and the subtraction's borrow
+	// would cancel out with the addition's carry. We need to subtract m to
+	// reduce our result.
+	//
+	// The overflow = 1, underflow = 0 case is not possible, because y is at
+	// most m - 1, and if adding m - 1 overflows, then subtracting m must
+	// necessarily underflow.
+	needSubtraction := ctEq(overflow, uint(underflow))
+
+	x.sub(needSubtraction, m.nat)
+	return x
+}
+
+// montgomeryRepresentation calculates x = x * R mod m, with R = 2^(_W * n) and
+// n = len(m.nat.limbs).
+//
+// Faster Montgomery multiplication replaces standard modular multiplication for
+// numbers in this representation.
+//
+// This assumes that x is already reduced mod m.
+func (x *nat) montgomeryRepresentation(m *modulus) *nat {
+	for i := 0; i < len(m.nat.limbs); i++ {
+		x.shiftIn(0, m) // x = x * 2^_W mod m
+	}
+	return x
+}
+
+// montgomeryMul calculates d = a * b / R mod m, with R = 2^(_W * n) and
+// n = len(m.nat.limbs), using the Montgomery Multiplication technique.
+//
+// All inputs should be the same length, not aliasing d, and already
+// reduced modulo m. d will be resized to the size of m and overwritten.
+func (d *nat) montgomeryMul(a *nat, b *nat, m *modulus) *nat {
+	// See https://bearssl.org/bigint.html#montgomery-reduction-and-multiplication
+	// for a description of the algorithm.
+
+	// Eliminate bounds checks in the loop.
+	size := len(m.nat.limbs)
+	aLimbs := a.limbs[:size]
+	bLimbs := b.limbs[:size]
+	dLimbs := d.resetFor(m).limbs[:size]
+	mLimbs := m.nat.limbs[:size]
+
+	var overflow uint
+	for i := 0; i < size; i++ {
+		f := ((dLimbs[0] + aLimbs[i]*bLimbs[0]) * m.m0inv) & _MASK
+		carry := uint(0)
+		for j := 0; j < size; j++ {
+			// z = d[j] + a[i] * b[j] + f * m[j] + carry <= 2^(2W+1) - 2^(W+1) + 2^W
+			hi, lo := bits.Mul(aLimbs[i], bLimbs[j])
+			z_lo, c := bits.Add(dLimbs[j], lo, 0)
+			z_hi, _ := bits.Add(0, hi, c)
+			hi, lo = bits.Mul(f, mLimbs[j])
+			z_lo, c = bits.Add(z_lo, lo, 0)
+			z_hi, _ = bits.Add(z_hi, hi, c)
+			z_lo, c = bits.Add(z_lo, carry, 0)
+			z_hi, _ = bits.Add(z_hi, 0, c)
+			if j > 0 {
+				dLimbs[j-1] = z_lo & _MASK
+			}
+			carry = z_hi<<1 | z_lo>>_W // carry <= 2^(W+1) - 2
+		}
+		z := overflow + carry // z <= 2^(W+1) - 1
+		dLimbs[size-1] = z & _MASK
+		overflow = z >> _W // overflow <= 1
+	}
+	// See modAdd for how overflow, underflow, and needSubtraction relate.
+	underflow := not(d.cmpGeq(m.nat)) // d < m
+	needSubtraction := ctEq(overflow, uint(underflow))
+	d.sub(needSubtraction, m.nat)
+
+	return d
+}
+
+// modMul calculates x *= y mod m.
+//
+// x and y must already be reduced modulo m, they must share its announced
+// length, and they may not alias.
+func (x *nat) modMul(y *nat, m *modulus) *nat {
+	// A Montgomery multiplication by a value out of the Montgomery domain
+	// takes the result out of Montgomery representation.
+	xR := x.clone().montgomeryRepresentation(m) // xR = x * R mod m
+	return x.montgomeryMul(xR, y, m)            // x = xR * y / R mod m
+}
+
+// exp calculates out = x^e mod m.
+//
+// The exponent e is represented in big-endian order. The output will be resized
+// to the size of m and overwritten. x must already be reduced modulo m.
+func (out *nat) exp(x *nat, e []byte, m *modulus) *nat {
+	// We use a 4 bit window. For our RSA workload, 4 bit windows are faster
+	// than 2 bit windows, but use an extra 12 nats worth of scratch space.
+	// Using bit sizes that don't divide 8 are more complex to implement.
+	table := make([]*nat, (1<<4)-1) // table[i] = x ^ (i+1)
+	table[0] = x.clone().montgomeryRepresentation(m)
+	for i := 1; i < len(table); i++ {
+		table[i] = new(nat).expandFor(m)
+		table[i].montgomeryMul(table[i-1], table[0], m)
+	}
+
+	out.resetFor(m)
+	out.limbs[0] = 1
+	out.montgomeryRepresentation(m)
+	t0 := new(nat).expandFor(m)
+	t1 := new(nat).expandFor(m)
+	for _, b := range e {
+		for _, j := range []int{4, 0} {
+			// Square four times.
+			t1.montgomeryMul(out, out, m)
+			out.montgomeryMul(t1, t1, m)
+			t1.montgomeryMul(out, out, m)
+			out.montgomeryMul(t1, t1, m)
+
+			// Select x^k in constant time from the table.
+			k := uint((b >> j) & 0b1111)
+			for i := range table {
+				t0.assign(ctEq(k, uint(i+1)), table[i])
+			}
+
+			// Multiply by x^k, discarding the result if k = 0.
+			t1.montgomeryMul(out, t0, m)
+			out.assign(not(ctEq(k, 0)), t1)
+		}
+	}
+
+	// By Montgomery multiplying with 1 not in Montgomery representation, we
+	// convert out back from Montgomery representation, because it works out to
+	// dividing by R.
+	t0.assign(yes, out)
+	t1.resetFor(m)
+	t1.limbs[0] = 1
+	out.montgomeryMul(t0, t1, m)
+
+	return out
+}
diff --git a/src/crypto/rsa/nat_test.go b/src/crypto/rsa/nat_test.go
new file mode 100644
index 0000000..3e6eb10
--- /dev/null
+++ b/src/crypto/rsa/nat_test.go
@@ -0,0 +1,384 @@
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package rsa
+
+import (
+	"bytes"
+	"math/big"
+	"math/bits"
+	"math/rand"
+	"reflect"
+	"testing"
+	"testing/quick"
+)
+
+// Generate generates an even nat. It's used by testing/quick to produce random
+// *nat values for quick.Check invocations.
+func (*nat) Generate(r *rand.Rand, size int) reflect.Value {
+	limbs := make([]uint, size)
+	for i := 0; i < size; i++ {
+		limbs[i] = uint(r.Uint64()) & ((1 << _W) - 2)
+	}
+	return reflect.ValueOf(&nat{limbs})
+}
+
+func testModAddCommutative(a *nat, b *nat) bool {
+	mLimbs := make([]uint, len(a.limbs))
+	for i := 0; i < len(mLimbs); i++ {
+		mLimbs[i] = _MASK
+	}
+	m := modulusFromNat(&nat{mLimbs})
+	aPlusB := a.clone()
+	aPlusB.modAdd(b, m)
+	bPlusA := b.clone()
+	bPlusA.modAdd(a, m)
+	return aPlusB.cmpEq(bPlusA) == 1
+}
+
+func TestModAddCommutative(t *testing.T) {
+	err := quick.Check(testModAddCommutative, &quick.Config{})
+	if err != nil {
+		t.Error(err)
+	}
+}
+
+func testModSubThenAddIdentity(a *nat, b *nat) bool {
+	mLimbs := make([]uint, len(a.limbs))
+	for i := 0; i < len(mLimbs); i++ {
+		mLimbs[i] = _MASK
+	}
+	m := modulusFromNat(&nat{mLimbs})
+	original := a.clone()
+	a.modSub(b, m)
+	a.modAdd(b, m)
+	return a.cmpEq(original) == 1
+}
+
+func TestModSubThenAddIdentity(t *testing.T) {
+	err := quick.Check(testModSubThenAddIdentity, &quick.Config{})
+	if err != nil {
+		t.Error(err)
+	}
+}
+
+func testMontgomeryRoundtrip(a *nat) bool {
+	one := &nat{make([]uint, len(a.limbs))}
+	one.limbs[0] = 1
+	aPlusOne := a.clone()
+	aPlusOne.add(1, one)
+	m := modulusFromNat(aPlusOne)
+	monty := a.clone()
+	monty.montgomeryRepresentation(m)
+	aAgain := monty.clone()
+	aAgain.montgomeryMul(monty, one, m)
+	return a.cmpEq(aAgain) == 1
+}
+
+func TestMontgomeryRoundtrip(t *testing.T) {
+	err := quick.Check(testMontgomeryRoundtrip, &quick.Config{})
+	if err != nil {
+		t.Error(err)
+	}
+}
+
+func TestFromBig(t *testing.T) {
+	expected := []byte{0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
+	theBig := new(big.Int).SetBytes(expected)
+	actual := natFromBig(theBig).fillBytes(make([]byte, len(expected)))
+	if !bytes.Equal(actual, expected) {
+		t.Errorf("%+x != %+x", actual, expected)
+	}
+}
+
+func TestFillBytes(t *testing.T) {
+	xBytes := []byte{0xAA, 0xFF, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88}
+	x := natFromBytes(xBytes)
+	for l := 20; l >= len(xBytes); l-- {
+		buf := make([]byte, l)
+		rand.Read(buf)
+		actual := x.fillBytes(buf)
+		expected := make([]byte, l)
+		copy(expected[l-len(xBytes):], xBytes)
+		if !bytes.Equal(actual, expected) {
+			t.Errorf("%d: %+v != %+v", l, actual, expected)
+		}
+	}
+	for l := len(xBytes) - 1; l >= 0; l-- {
+		(func() {
+			defer func() {
+				if recover() == nil {
+					t.Errorf("%d: expected panic", l)
+				}
+			}()
+			x.fillBytes(make([]byte, l))
+		})()
+	}
+}
+
+func TestFromBytes(t *testing.T) {
+	f := func(xBytes []byte) bool {
+		if len(xBytes) == 0 {
+			return true
+		}
+		actual := natFromBytes(xBytes).fillBytes(make([]byte, len(xBytes)))
+		if !bytes.Equal(actual, xBytes) {
+			t.Errorf("%+x != %+x", actual, xBytes)
+			return false
+		}
+		return true
+	}
+
+	err := quick.Check(f, &quick.Config{})
+	if err != nil {
+		t.Error(err)
+	}
+
+	f([]byte{0xFF, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88})
+	f(bytes.Repeat([]byte{0xFF}, _W))
+}
+
+func TestShiftIn(t *testing.T) {
+	if bits.UintSize != 64 {
+		t.Skip("examples are only valid in 64 bit")
+	}
+	examples := []struct {
+		m, x, expected []byte
+		y              uint64
+	}{{
+		m:        []byte{13},
+		x:        []byte{0},
+		y:        0x7FFF_FFFF_FFFF_FFFF,
+		expected: []byte{7},
+	}, {
+		m:        []byte{13},
+		x:        []byte{7},
+		y:        0x7FFF_FFFF_FFFF_FFFF,
+		expected: []byte{11},
+	}, {
+		m:        []byte{0x06, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d},
+		x:        make([]byte, 9),
+		y:        0x7FFF_FFFF_FFFF_FFFF,
+		expected: []byte{0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
+	}, {
+		m:        []byte{0x06, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d},
+		x:        []byte{0x00, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
+		y:        0,
+		expected: []byte{0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08},
+	}}
+
+	for i, tt := range examples {
+		m := modulusFromNat(natFromBytes(tt.m))
+		got := natFromBytes(tt.x).expandFor(m).shiftIn(uint(tt.y), m)
+		if got.cmpEq(natFromBytes(tt.expected).expandFor(m)) != 1 {
+			t.Errorf("%d: got %x, expected %x", i, got, tt.expected)
+		}
+	}
+}
+
+func TestModulusAndNatSizes(t *testing.T) {
+	// These are 126 bit (2 * _W on 64-bit architectures) values, serialized as
+	// 128 bits worth of bytes. If leading zeroes are stripped, they fit in two
+	// limbs, if they are not, they fit in three. This can be a problem because
+	// modulus strips leading zeroes and nat does not.
+	m := modulusFromNat(natFromBytes([]byte{
+		0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}))
+	x := natFromBytes([]byte{
+		0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+		0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe})
+	x.expandFor(m) // must not panic for shrinking
+}
+
+func TestExpand(t *testing.T) {
+	sliced := []uint{1, 2, 3, 4}
+	examples := []struct {
+		in  []uint
+		n   int
+		out []uint
+	}{{
+		[]uint{1, 2},
+		4,
+		[]uint{1, 2, 0, 0},
+	}, {
+		sliced[:2],
+		4,
+		[]uint{1, 2, 0, 0},
+	}, {
+		[]uint{1, 2},
+		2,
+		[]uint{1, 2},
+	}, {
+		[]uint{1, 2, 0},
+		2,
+		[]uint{1, 2},
+	}}
+
+	for i, tt := range examples {
+		got := (&nat{tt.in}).expand(tt.n)
+		if len(got.limbs) != len(tt.out) || got.cmpEq(&nat{tt.out}) != 1 {
+			t.Errorf("%d: got %x, expected %x", i, got, tt.out)
+		}
+	}
+}
+
+func TestMod(t *testing.T) {
+	m := modulusFromNat(natFromBytes([]byte{0x06, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d}))
+	x := natFromBytes([]byte{0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01})
+	out := new(nat)
+	out.mod(x, m)
+	expected := natFromBytes([]byte{0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09})
+	if out.cmpEq(expected) != 1 {
+		t.Errorf("%+v != %+v", out, expected)
+	}
+}
+
+func TestModSub(t *testing.T) {
+	m := modulusFromNat(&nat{[]uint{13}})
+	x := &nat{[]uint{6}}
+	y := &nat{[]uint{7}}
+	x.modSub(y, m)
+	expected := &nat{[]uint{12}}
+	if x.cmpEq(expected) != 1 {
+		t.Errorf("%+v != %+v", x, expected)
+	}
+	x.modSub(y, m)
+	expected = &nat{[]uint{5}}
+	if x.cmpEq(expected) != 1 {
+		t.Errorf("%+v != %+v", x, expected)
+	}
+}
+
+func TestModAdd(t *testing.T) {
+	m := modulusFromNat(&nat{[]uint{13}})
+	x := &nat{[]uint{6}}
+	y := &nat{[]uint{7}}
+	x.modAdd(y, m)
+	expected := &nat{[]uint{0}}
+	if x.cmpEq(expected) != 1 {
+		t.Errorf("%+v != %+v", x, expected)
+	}
+	x.modAdd(y, m)
+	expected = &nat{[]uint{7}}
+	if x.cmpEq(expected) != 1 {
+		t.Errorf("%+v != %+v", x, expected)
+	}
+}
+
+func TestExp(t *testing.T) {
+	m := modulusFromNat(&nat{[]uint{13}})
+	x := &nat{[]uint{3}}
+	out := &nat{[]uint{0}}
+	out.exp(x, []byte{12}, m)
+	expected := &nat{[]uint{1}}
+	if out.cmpEq(expected) != 1 {
+		t.Errorf("%+v != %+v", out, expected)
+	}
+}
+
+func makeBenchmarkModulus() *modulus {
+	m := make([]uint, 32)
+	for i := 0; i < 32; i++ {
+		m[i] = _MASK
+	}
+	return modulusFromNat(&nat{limbs: m})
+}
+
+func makeBenchmarkValue() *nat {
+	x := make([]uint, 32)
+	for i := 0; i < 32; i++ {
+		x[i] = _MASK - 1
+	}
+	return &nat{limbs: x}
+}
+
+func makeBenchmarkExponent() []byte {
+	e := make([]byte, 256)
+	for i := 0; i < 32; i++ {
+		e[i] = 0xFF
+	}
+	return e
+}
+
+func BenchmarkModAdd(b *testing.B) {
+	x := makeBenchmarkValue()
+	y := makeBenchmarkValue()
+	m := makeBenchmarkModulus()
+
+	b.ResetTimer()
+	for i := 0; i < b.N; i++ {
+		x.modAdd(y, m)
+	}
+}
+
+func BenchmarkModSub(b *testing.B) {
+	x := makeBenchmarkValue()
+	y := makeBenchmarkValue()
+	m := makeBenchmarkModulus()
+
+	b.ResetTimer()
+	for i := 0; i < b.N; i++ {
+		x.modSub(y, m)
+	}
+}
+
+func BenchmarkMontgomeryRepr(b *testing.B) {
+	x := makeBenchmarkValue()
+	m := makeBenchmarkModulus()
+
+	b.ResetTimer()
+	for i := 0; i < b.N; i++ {
+		x.montgomeryRepresentation(m)
+	}
+}
+
+func BenchmarkMontgomeryMul(b *testing.B) {
+	x := makeBenchmarkValue()
+	y := makeBenchmarkValue()
+	out := makeBenchmarkValue()
+	m := makeBenchmarkModulus()
+
+	b.ResetTimer()
+	for i := 0; i < b.N; i++ {
+		out.montgomeryMul(x, y, m)
+	}
+}
+
+func BenchmarkModMul(b *testing.B) {
+	x := makeBenchmarkValue()
+	y := makeBenchmarkValue()
+	m := makeBenchmarkModulus()
+
+	b.ResetTimer()
+	for i := 0; i < b.N; i++ {
+		x.modMul(y, m)
+	}
+}
+
+func BenchmarkExpBig(b *testing.B) {
+	out := new(big.Int)
+	exponentBytes := makeBenchmarkExponent()
+	x := new(big.Int).SetBytes(exponentBytes)
+	e := new(big.Int).SetBytes(exponentBytes)
+	n := new(big.Int).SetBytes(exponentBytes)
+	one := new(big.Int).SetUint64(1)
+	n.Add(n, one)
+
+	b.ResetTimer()
+	for i := 0; i < b.N; i++ {
+		out.Exp(x, e, n)
+	}
+}
+
+func BenchmarkExp(b *testing.B) {
+	x := makeBenchmarkValue()
+	e := makeBenchmarkExponent()
+	out := makeBenchmarkValue()
+	m := makeBenchmarkModulus()
+
+	b.ResetTimer()
+	for i := 0; i < b.N; i++ {
+		out.exp(x, e, m)
+	}
+}
diff --git a/src/crypto/rsa/pkcs1v15.go b/src/crypto/rsa/pkcs1v15.go
index a216be3..ce89f92 100644
--- a/src/crypto/rsa/pkcs1v15.go
+++ b/src/crypto/rsa/pkcs1v15.go
@@ -9,7 +9,6 @@ import (
 	"crypto/subtle"
 	"errors"
 	"io"
-	"math/big"
 
 	"crypto/internal/randutil"
 )
@@ -58,14 +57,11 @@ func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) ([]byte, error)
 	em[len(em)-len(msg)-1] = 0
 	copy(mm, msg)
 
-	m := new(big.Int).SetBytes(em)
-	c := encrypt(new(big.Int), pub, m)
-
-	return c.FillBytes(em), nil
+	return encrypt(pub, em), nil
 }
 
 // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5.
-// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
+// The rand parameter is legacy and ignored, and it can be as nil.
 //
 // Note that whether this function returns an error or not discloses secret
 // information. If an attacker can cause this function to run repeatedly and
@@ -76,7 +72,7 @@ func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byt
 	if err := checkPub(&priv.PublicKey); err != nil {
 		return nil, err
 	}
-	valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext)
+	valid, out, index, err := decryptPKCS1v15(priv, ciphertext)
 	if err != nil {
 		return nil, err
 	}
@@ -87,7 +83,7 @@ func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) ([]byt
 }
 
 // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5.
-// If rand != nil, it uses RSA blinding to avoid timing side-channel attacks.
+// The rand parameter is legacy and ignored, and it can be as nil.
 // It returns an error if the ciphertext is the wrong length or if the
 // ciphertext is greater than the public modulus. Otherwise, no error is
 // returned. If the padding is valid, the resulting plaintext message is copied
@@ -114,7 +110,7 @@ func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []by
 		return ErrDecryption
 	}
 
-	valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext)
+	valid, em, index, err := decryptPKCS1v15(priv, ciphertext)
 	if err != nil {
 		return err
 	}
@@ -130,26 +126,24 @@ func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []by
 	return nil
 }
 
-// decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if
-// rand is not nil. It returns one or zero in valid that indicates whether the
-// plaintext was correctly structured. In either case, the plaintext is
-// returned in em so that it may be read independently of whether it was valid
-// in order to maintain constant memory access patterns. If the plaintext was
-// valid then index contains the index of the original message in em.
-func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
+// decryptPKCS1v15 decrypts ciphertext using priv. It returns one or zero in
+// valid that indicates whether the plaintext was correctly structured.
+// In either case, the plaintext is returned in em so that it may be read
+// independently of whether it was valid in order to maintain constant memory
+// access patterns. If the plaintext was valid then index contains the index of
+// the original message in em, to allow constant time padding removal.
+func decryptPKCS1v15(priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) {
 	k := priv.Size()
 	if k < 11 {
 		err = ErrDecryption
 		return
 	}
 
-	c := new(big.Int).SetBytes(ciphertext)
-	m, err := decrypt(rand, priv, c)
+	em, err = decrypt(priv, ciphertext)
 	if err != nil {
 		return
 	}
 
-	em = m.FillBytes(make([]byte, k))
 	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
 	secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2)
 
@@ -221,8 +215,7 @@ var hashPrefixes = map[crypto.Hash][]byte{
 // function. If hash is zero, hashed is signed directly. This isn't
 // advisable except for interoperability.
 //
-// If rand is not nil then RSA blinding will be used to avoid timing
-// side-channel attacks.
+// The rand parameter is legacy and ignored, and it can be as nil.
 //
 // This function is deterministic. Thus, if the set of possible
 // messages is small, an attacker may be able to build a map from
@@ -249,13 +242,7 @@ func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []b
 	copy(em[k-tLen:k-hashLen], prefix)
 	copy(em[k-hashLen:k], hashed)
 
-	m := new(big.Int).SetBytes(em)
-	c, err := decryptAndCheck(rand, priv, m)
-	if err != nil {
-		return nil, err
-	}
-
-	return c.FillBytes(em), nil
+	return decryptAndCheck(priv, em)
 }
 
 // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature.
@@ -275,9 +262,7 @@ func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte)
 		return ErrVerification
 	}
 
-	c := new(big.Int).SetBytes(sig)
-	m := encrypt(new(big.Int), pub, c)
-	em := m.FillBytes(make([]byte, k))
+	em := encrypt(pub, sig)
 	// EM = 0x00 || 0x01 || PS || 0x00 || T
 
 	ok := subtle.ConstantTimeByteEq(em[0], 0)
diff --git a/src/crypto/rsa/pss.go b/src/crypto/rsa/pss.go
index 814522d..eaba4be 100644
--- a/src/crypto/rsa/pss.go
+++ b/src/crypto/rsa/pss.go
@@ -12,7 +12,6 @@ import (
 	"errors"
 	"hash"
 	"io"
-	"math/big"
 )
 
 // Per RFC 8017, Section 9.1
@@ -207,19 +206,27 @@ func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error {
 // Note that hashed must be the result of hashing the input message using the
 // given hash function. salt is a random sequence of bytes whose length will be
 // later used to verify the signature.
-func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) {
-	emBits := priv.N.BitLen() - 1
+func signPSSWithSalt(priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) ([]byte, error) {
+	emBits := bigBitLen(priv.N) - 1
 	em, err := emsaPSSEncode(hashed, emBits, salt, hash.New())
 	if err != nil {
 		return nil, err
 	}
-	m := new(big.Int).SetBytes(em)
-	c, err := decryptAndCheck(rand, priv, m)
-	if err != nil {
-		return nil, err
+
+	// RFC 8017: "Note that the octet length of EM will be one less than k if
+	// modBits - 1 is divisible by 8 and equal to k otherwise, where k is the
+	// length in octets of the RSA modulus n."
+	//
+	// This is extremely annoying, as all other encrypt and decrypt inputs are
+	// always the exact same size as the modulus. Since it only happens for
+	// weird modulus sizes, fix it by padding inefficiently.
+	if emLen, k := len(em), priv.Size(); emLen < k {
+		emNew := make([]byte, k)
+		copy(emNew[k-emLen:], em)
+		em = emNew
 	}
-	s := make([]byte, priv.Size())
-	return c.FillBytes(s), nil
+
+	return decryptAndCheck(priv, em)
 }
 
 const (
@@ -269,7 +276,7 @@ func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte,
 	saltLength := opts.saltLength()
 	switch saltLength {
 	case PSSSaltLengthAuto:
-		saltLength = (priv.N.BitLen()-1+7)/8 - 2 - hash.Size()
+		saltLength = (bigBitLen(priv.N)-1+7)/8 - 2 - hash.Size()
 	case PSSSaltLengthEqualsHash:
 		saltLength = hash.Size()
 	}
@@ -278,7 +285,7 @@ func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, digest []byte,
 	if _, err := io.ReadFull(rand, salt); err != nil {
 		return nil, err
 	}
-	return signPSSWithSalt(rand, priv, hash, digest, salt)
+	return signPSSWithSalt(priv, hash, digest, salt)
 }
 
 // VerifyPSS verifies a PSS signature.
@@ -291,13 +298,22 @@ func VerifyPSS(pub *PublicKey, hash crypto.Hash, digest []byte, sig []byte, opts
 	if len(sig) != pub.Size() {
 		return ErrVerification
 	}
-	s := new(big.Int).SetBytes(sig)
-	m := encrypt(new(big.Int), pub, s)
-	emBits := pub.N.BitLen() - 1
+
+	emBits := bigBitLen(pub.N) - 1
 	emLen := (emBits + 7) / 8
-	if m.BitLen() > emLen*8 {
-		return ErrVerification
+	em := encrypt(pub, sig)
+
+	// Like in signPSSWithSalt, deal with mismatches between emLen and the size
+	// of the modulus. The spec would have us wire emLen into the encoding
+	// function, but we'd rather always encode to the size of the modulus and
+	// then strip leading zeroes if necessary. This only happens for weird
+	// modulus sizes anyway.
+	for len(em) > emLen && len(em) > 0 {
+		if em[0] != 0 {
+			return ErrVerification
+		}
+		em = em[1:]
 	}
-	em := m.FillBytes(make([]byte, emLen))
+
 	return emsaPSSVerify(digest, em, emBits, opts.saltLength(), hash.New())
 }
diff --git a/src/crypto/rsa/pss_test.go b/src/crypto/rsa/pss_test.go
index c3a6d46..d018b43 100644
--- a/src/crypto/rsa/pss_test.go
+++ b/src/crypto/rsa/pss_test.go
@@ -233,7 +233,10 @@ func TestPSSSigning(t *testing.T) {
 	}
 }
 
-func TestSignWithPSSSaltLengthAuto(t *testing.T) {
+func TestPSS513(t *testing.T) {
+	// See Issue 42741, and separately, RFC 8017: "Note that the octet length of
+	// EM will be one less than k if modBits - 1 is divisible by 8 and equal to
+	// k otherwise, where k is the length in octets of the RSA modulus n."
 	key, err := GenerateKey(rand.Reader, 513)
 	if err != nil {
 		t.Fatal(err)
@@ -246,8 +249,9 @@ func TestSignWithPSSSaltLengthAuto(t *testing.T) {
 	if err != nil {
 		t.Fatal(err)
 	}
-	if len(signature) == 0 {
-		t.Fatal("empty signature returned")
+	err = VerifyPSS(&key.PublicKey, crypto.SHA256, digest[:], signature, nil)
+	if err != nil {
+		t.Error(err)
 	}
 }
 
diff --git a/src/crypto/rsa/rsa.go b/src/crypto/rsa/rsa.go
index 5a00ed2..29d9d31 100644
--- a/src/crypto/rsa/rsa.go
+++ b/src/crypto/rsa/rsa.go
@@ -19,13 +19,17 @@
 // over the public key primitive, the PrivateKey type implements the
 // Decrypter and Signer interfaces from the crypto package.
 //
-// The RSA operations in this package are not implemented using constant-time algorithms.
+// Operations in this package are implemented using constant-time algorithms,
+// except for [GenerateKey], [PrivateKey.Precompute], and [PrivateKey.Validate].
+// Every other operation only leaks the bit size of the involved values, which
+// all depend on the selected key size.
 package rsa
 
 import (
 	"crypto"
 	"crypto/rand"
 	"crypto/subtle"
+	"encoding/binary"
 	"errors"
 	"hash"
 	"io"
@@ -35,7 +39,6 @@ import (
 	"crypto/internal/randutil"
 )
 
-var bigZero = big.NewInt(0)
 var bigOne = big.NewInt(1)
 
 // A PublicKey represents the public part of an RSA key.
@@ -47,7 +50,7 @@ type PublicKey struct {
 // Size returns the modulus size in bytes. Raw signatures and ciphertexts
 // for or by this public key will have the same size.
 func (pub *PublicKey) Size() int {
-	return (pub.N.BitLen() + 7) / 8
+	return (bigBitLen(pub.N) + 7) / 8
 }
 
 // OAEPOptions is an interface for passing options to OAEP decryption using the
@@ -351,10 +354,19 @@ func mgf1XOR(out []byte, hash hash.Hash, seed []byte) {
 // too large for the size of the public key.
 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size")
 
-func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int {
-	e := big.NewInt(int64(pub.E))
-	c.Exp(m, e, pub.N)
-	return c
+func encrypt(pub *PublicKey, plaintext []byte) []byte {
+
+	N := modulusFromNat(natFromBig(pub.N))
+	m := natFromBytes(plaintext).expandFor(N)
+
+	e := make([]byte, 8)
+	binary.BigEndian.PutUint64(e, uint64(pub.E))
+	for len(e) > 1 && e[0] == 0 {
+		e = e[1:]
+	}
+
+	out := make([]byte, modulusSize(N))
+	return new(nat).exp(m, e, N).fillBytes(out)
 }
 
 // EncryptOAEP encrypts the given message with RSA-OAEP.
@@ -404,12 +416,7 @@ func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, l
 	mgf1XOR(db, hash, seed)
 	mgf1XOR(seed, hash, db)
 
-	m := new(big.Int)
-	m.SetBytes(em)
-	c := encrypt(new(big.Int), pub, m)
-
-	out := make([]byte, k)
-	return c.FillBytes(out), nil
+	return encrypt(pub, em), nil
 }
 
 // ErrDecryption represents a failure to decrypt a message.
@@ -451,98 +458,71 @@ func (priv *PrivateKey) Precompute() {
 	}
 }
 
-// decrypt performs an RSA decryption, resulting in a plaintext integer. If a
-// random source is given, RSA blinding is used.
-func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
-	// TODO(agl): can we get away with reusing blinds?
-	if c.Cmp(priv.N) > 0 {
-		err = ErrDecryption
-		return
+// decrypt performs an RSA decryption of ciphertext into out.
+func decrypt(priv *PrivateKey, ciphertext []byte) ([]byte, error) {
+
+	N := modulusFromNat(natFromBig(priv.N))
+	c := natFromBytes(ciphertext).expandFor(N)
+	if c.cmpGeq(N.nat) == 1 {
+		return nil, ErrDecryption
 	}
 	if priv.N.Sign() == 0 {
 		return nil, ErrDecryption
 	}
 
-	var ir *big.Int
-	if random != nil {
-		randutil.MaybeReadByte(random)
-
-		// Blinding enabled. Blinding involves multiplying c by r^e.
-		// Then the decryption operation performs (m^e * r^e)^d mod n
-		// which equals mr mod n. The factor of r can then be removed
-		// by multiplying by the multiplicative inverse of r.
-
-		var r *big.Int
-		ir = new(big.Int)
-		for {
-			r, err = rand.Int(random, priv.N)
-			if err != nil {
-				return
-			}
-			if r.Cmp(bigZero) == 0 {
-				r = bigOne
-			}
-			ok := ir.ModInverse(r, priv.N)
-			if ok != nil {
-				break
-			}
-		}
-		bigE := big.NewInt(int64(priv.E))
-		rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0
-		cCopy := new(big.Int).Set(c)
-		cCopy.Mul(cCopy, rpowe)
-		cCopy.Mod(cCopy, priv.N)
-		c = cCopy
-	}
-
+	// Note that because our private decryption exponents are stored as big.Int,
+	// we potentially leak the exact number of bits of these exponents. This
+	// isn't great, but should be fine.
 	if priv.Precomputed.Dp == nil {
-		m = new(big.Int).Exp(c, priv.D, priv.N)
-	} else {
-		// We have the precalculated values needed for the CRT.
-		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0])
-		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1])
-		m.Sub(m, m2)
-		if m.Sign() < 0 {
-			m.Add(m, priv.Primes[0])
-		}
-		m.Mul(m, priv.Precomputed.Qinv)
-		m.Mod(m, priv.Primes[0])
-		m.Mul(m, priv.Primes[1])
-		m.Add(m, m2)
-
-		for i, values := range priv.Precomputed.CRTValues {
-			prime := priv.Primes[2+i]
-			m2.Exp(c, values.Exp, prime)
-			m2.Sub(m2, m)
-			m2.Mul(m2, values.Coeff)
-			m2.Mod(m2, prime)
-			if m2.Sign() < 0 {
-				m2.Add(m2, prime)
-			}
-			m2.Mul(m2, values.R)
-			m.Add(m, m2)
-		}
-	}
-
-	if ir != nil {
-		// Unblind.
-		m.Mul(m, ir)
-		m.Mod(m, priv.N)
-	}
-
-	return
+		out := make([]byte, modulusSize(N))
+		return new(nat).exp(c, priv.D.Bytes(), N).fillBytes(out), nil
+	}
+
+	t0 := new(nat)
+	P := modulusFromNat(natFromBig(priv.Primes[0]))
+	Q := modulusFromNat(natFromBig(priv.Primes[1]))
+	// m = c ^ Dp mod p
+	m := new(nat).exp(t0.mod(c, P), priv.Precomputed.Dp.Bytes(), P)
+	// m2 = c ^ Dq mod q
+	m2 := new(nat).exp(t0.mod(c, Q), priv.Precomputed.Dq.Bytes(), Q)
+	// m = m - m2 mod p
+	m.modSub(t0.mod(m2, P), P)
+	// m = m * Qinv mod p
+	m.modMul(natFromBig(priv.Precomputed.Qinv).expandFor(P), P)
+	// m = m * q mod N
+	m.expandFor(N).modMul(t0.mod(Q.nat, N), N)
+	// m = m + m2 mod N
+	m.modAdd(m2.expandFor(N), N)
+
+	for i, values := range priv.Precomputed.CRTValues {
+		p := modulusFromNat(natFromBig(priv.Primes[2+i]))
+		// m2 = c ^ Exp mod p
+		m2.exp(t0.mod(c, p), values.Exp.Bytes(), p)
+		// m2 = m2 - m mod p
+		m2.modSub(t0.mod(m, p), p)
+		// m2 = m2 * Coeff mod p
+		m2.modMul(natFromBig(values.Coeff).expandFor(p), p)
+		// m2 = m2 * R mod N
+		R := natFromBig(values.R).expandFor(N)
+		m2.expandFor(N).modMul(R, N)
+		// m = m + m2 mod N
+		m.modAdd(m2, N)
+	}
+
+	out := make([]byte, modulusSize(N))
+	return m.fillBytes(out), nil
 }
 
-func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) {
-	m, err = decrypt(random, priv, c)
+func decryptAndCheck(priv *PrivateKey, ciphertext []byte) (m []byte, err error) {
+	m, err = decrypt(priv, ciphertext)
 	if err != nil {
 		return nil, err
 	}
 
 	// In order to defend against errors in the CRT computation, m^e is
 	// calculated, which should match the original ciphertext.
-	check := encrypt(new(big.Int), &priv.PublicKey, m)
-	if c.Cmp(check) != 0 {
+	check := encrypt(&priv.PublicKey, m)
+	if subtle.ConstantTimeCompare(ciphertext, check) != 1 {
 		return nil, errors.New("rsa: internal error")
 	}
 	return m, nil
@@ -554,9 +534,7 @@ func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int
 // Encryption and decryption of a given message must use the same hash function
 // and sha256.New() is a reasonable choice.
 //
-// The random parameter, if not nil, is used to blind the private-key operation
-// and avoid timing side-channel attacks. Blinding is purely internal to this
-// function – the random data need not match that used when encrypting.
+// The random parameter is legacy and ignored, and it can be as nil.
 //
 // The label parameter must match the value given when encrypting. See
 // EncryptOAEP for details.
@@ -570,9 +548,7 @@ func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext
 		return nil, ErrDecryption
 	}
 
-	c := new(big.Int).SetBytes(ciphertext)
-
-	m, err := decrypt(random, priv, c)
+	em, err := decrypt(priv, ciphertext)
 	if err != nil {
 		return nil, err
 	}
@@ -581,10 +557,6 @@ func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext
 	lHash := hash.Sum(nil)
 	hash.Reset()
 
-	// We probably leak the number of leading zeros.
-	// It's not clear that we can do anything about this.
-	em := m.FillBytes(make([]byte, k))
-
 	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0)
 
 	seed := em[1 : hash.Size()+1]
-- 
2.25.1