aboutsummaryrefslogtreecommitdiffstats
path: root/meta/classes/reproducible_build_simple.bbclass
blob: 8a60deef3d6a26af831efa88507412e5c05a2068 (plain)
1
2
3
4
5
6
7
8
9
10
# Setup default environment for reproducible builds.

BUILD_REPRODUCIBLE_BINARIES = "1"

export PYTHONHASHSEED = "0"
export PERL_HASH_SEED = "0"
export SOURCE_DATE_EPOCH ??= "1520598896"

REPRODUCIBLE_TIMESTAMP_ROOTFS ??= "1520598896"
/a> 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
#  This file is part of pybootchartgui.

#  pybootchartgui is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.

#  pybootchartgui is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.

#  You should have received a copy of the GNU General Public License
#  along with pybootchartgui. If not, see <http://www.gnu.org/licenses/>.

import os
import string
import re
import sys
import tarfile
from time import clock
from collections import defaultdict
from functools import reduce

from .samples import *
from .process_tree import ProcessTree

if sys.version_info >= (3, 0):
    long = int

# Parsing produces as its end result a 'Trace'

class Trace:
    def __init__(self, writer, paths, options):
        self.processes = {}
        self.start = {}
        self.end = {}
        self.min = None
        self.max = None
        self.headers = None
        self.disk_stats =  []
        self.ps_stats = None
        self.taskstats = None
        self.cpu_stats = []
        self.cmdline = None
        self.kernel = None
        self.kernel_tree = None
        self.filename = None
        self.parent_map = None
        self.mem_stats = []
        self.monitor_disk = None
        self.times = [] # Always empty, but expected by draw.py when drawing system charts.

        if len(paths):
            parse_paths (writer, self, paths)
            if not self.valid():
                raise ParseError("empty state: '%s' does not contain a valid bootchart" % ", ".join(paths))

            if options.full_time:
                self.min = min(self.start.keys())
                self.max = max(self.end.keys())


        # Rendering system charts depends on start and end
        # time. Provide them where the original drawing code expects
        # them, i.e. in proc_tree.
        class BitbakeProcessTree:
            def __init__(self, start_time, end_time):
                self.start_time = start_time
                self.end_time = end_time
                self.duration = self.end_time - self.start_time
        self.proc_tree = BitbakeProcessTree(min(self.start.keys()),
                                            max(self.end.keys()))


        return

        # Turn that parsed information into something more useful
        # link processes into a tree of pointers, calculate statistics
        self.compile(writer)

        # Crop the chart to the end of the first idle period after the given
        # process
        if options.crop_after:
            idle = self.crop (writer, options.crop_after)
        else:
            idle = None

        # Annotate other times as the first start point of given process lists
        self.times = [ idle ]
        if options.annotate:
            for procnames in options.annotate:
                names = [x[:15] for x in procnames.split(",")]
                for proc in self.ps_stats.process_map.values():
                    if proc.cmd in names:
                        self.times.append(proc.start_time)
                        break
                    else:
                        self.times.append(None)

        self.proc_tree = ProcessTree(writer, self.kernel, self.ps_stats,
                                     self.ps_stats.sample_period,
                                     self.headers.get("profile.process"),
                                     options.prune, idle, self.taskstats,
                                     self.parent_map is not None)

        if self.kernel is not None:
            self.kernel_tree = ProcessTree(writer, self.kernel, None, 0,
                                           self.headers.get("profile.process"),
                                           False, None, None, True)

    def valid(self):
        return len(self.processes) != 0
        return self.headers != None and self.disk_stats != None and \
               self.ps_stats != None and self.cpu_stats != None

    def add_process(self, process, start, end):
        self.processes[process] = [start, end]
        if start not in self.start:
            self.start[start] = []
        if process not in self.start[start]:
            self.start[start].append(process)
        if end not in self.end:
            self.end[end] = []
        if process not in self.end[end]:
            self.end[end].append(process)

    def compile(self, writer):

        def find_parent_id_for(pid):
            if pid is 0:
                return 0
            ppid = self.parent_map.get(pid)
            if ppid:
                # many of these double forks are so short lived
                # that we have no samples, or process info for them
                # so climb the parent hierarcy to find one
                if int (ppid * 1000) not in self.ps_stats.process_map:
#                    print "Pid '%d' short lived with no process" % ppid
                    ppid = find_parent_id_for (ppid)
#                else:
#                    print "Pid '%d' has an entry" % ppid
            else:
#                print "Pid '%d' missing from pid map" % pid
                return 0
            return ppid

        # merge in the cmdline data
        if self.cmdline is not None:
            for proc in self.ps_stats.process_map.values():
                rpid = int (proc.pid // 1000)
                if rpid in self.cmdline:
                    cmd = self.cmdline[rpid]
                    proc.exe = cmd['exe']
                    proc.args = cmd['args']
#                else:
#                    print "proc %d '%s' not in cmdline" % (rpid, proc.exe)

        # re-parent any stray orphans if we can
        if self.parent_map is not None:
            for process in self.ps_stats.process_map.values():
                ppid = find_parent_id_for (int(process.pid // 1000))
                if ppid:
                    process.ppid = ppid * 1000

        # stitch the tree together with pointers
        for process in self.ps_stats.process_map.values():
            process.set_parent (self.ps_stats.process_map)

        # count on fingers variously
        for process in self.ps_stats.process_map.values():
            process.calc_stats (self.ps_stats.sample_period)

    def crop(self, writer, crop_after):

        def is_idle_at(util, start, j):
            k = j + 1
            while k < len(util) and util[k][0] < start + 300:
                k += 1
            k = min(k, len(util)-1)

            if util[j][1] >= 0.25:
                return False

            avgload = sum(u[1] for u in util[j:k+1]) / (k-j+1)
            if avgload < 0.25:
                return True
            else:
                return False
        def is_idle(util, start):
            for j in range(0, len(util)):
                if util[j][0] < start:
                    continue
                return is_idle_at(util, start, j)
            else:
                return False

        names = [x[:15] for x in crop_after.split(",")]
        for proc in self.ps_stats.process_map.values():
            if proc.cmd in names or proc.exe in names:
                writer.info("selected proc '%s' from list (start %d)"
                            % (proc.cmd, proc.start_time))
                break
        if proc is None:
            writer.warn("no selected crop proc '%s' in list" % crop_after)


        cpu_util = [(sample.time, sample.user + sample.sys + sample.io) for sample in self.cpu_stats]
        disk_util = [(sample.time, sample.util) for sample in self.disk_stats]

        idle = None
        for i in range(0, len(cpu_util)):
            if cpu_util[i][0] < proc.start_time:
                continue
            if is_idle_at(cpu_util, cpu_util[i][0], i) \
               and is_idle(disk_util, cpu_util[i][0]):
                idle = cpu_util[i][0]
                break

        if idle is None:
            writer.warn ("not idle after proc '%s'" % crop_after)
            return None

        crop_at = idle + 300
        writer.info ("cropping at time %d" % crop_at)
        while len (self.cpu_stats) \
                    and self.cpu_stats[-1].time > crop_at:
            self.cpu_stats.pop()
        while len (self.disk_stats) \
                    and self.disk_stats[-1].time > crop_at:
            self.disk_stats.pop()

        self.ps_stats.end_time = crop_at

        cropped_map = {}
        for key, value in self.ps_stats.process_map.items():
            if (value.start_time <= crop_at):
                cropped_map[key] = value

        for proc in cropped_map.values():
            proc.duration = min (proc.duration, crop_at - proc.start_time)
            while len (proc.samples) \
                        and proc.samples[-1].time > crop_at:
                proc.samples.pop()

        self.ps_stats.process_map = cropped_map

        return idle



class ParseError(Exception):
    """Represents errors during parse of the bootchart."""
    def __init__(self, value):
        self.value = value

    def __str__(self):
        return self.value

def _parse_headers(file):
    """Parses the headers of the bootchart."""
    def parse(acc, line):
        (headers, last) = acc
        if '=' in line:
            last, value = map (lambda x: x.strip(), line.split('=', 1))
        else:
            value = line.strip()
        headers[last] += value
        return headers, last
    return reduce(parse, file.read().decode('utf-8').split('\n'), (defaultdict(str),''))[0]

def _parse_timed_blocks(file):
    """Parses (ie., splits) a file into so-called timed-blocks. A
    timed-block consists of a timestamp on a line by itself followed
    by zero or more lines of data for that point in time."""
    def parse(block):
        lines = block.split('\n')
        if not lines:
            raise ParseError('expected a timed-block consisting a timestamp followed by data lines')
        try:
            return (int(lines[0]), lines[1:])
        except ValueError:
            raise ParseError("expected a timed-block, but timestamp '%s' is not an integer" % lines[0])
    blocks = file.read().decode('utf-8').split('\n\n')
    return [parse(block) for block in blocks if block.strip() and not block.endswith(' not running\n')]

def _parse_proc_ps_log(writer, file):
    """
     * See proc(5) for details.
     *
     * {pid, comm, state, ppid, pgrp, session, tty_nr, tpgid, flags, minflt, cminflt, majflt, cmajflt, utime, stime,
     *  cutime, cstime, priority, nice, 0, itrealvalue, starttime, vsize, rss, rlim, startcode, endcode, startstack,
     *  kstkesp, kstkeip}
    """
    processMap = {}
    ltime = 0
    timed_blocks = _parse_timed_blocks(file)
    for time, lines in timed_blocks:
        for line in lines:
            if not line: continue
            tokens = line.split(' ')
            if len(tokens) < 21:
                continue

            offset = [index for index, token in enumerate(tokens[1:]) if token[-1] == ')'][0]
            pid, cmd, state, ppid = int(tokens[0]), ' '.join(tokens[1:2+offset]), tokens[2+offset], int(tokens[3+offset])
            userCpu, sysCpu, stime = int(tokens[13+offset]), int(tokens[14+offset]), int(tokens[21+offset])

            # magic fixed point-ness ...
            pid *= 1000
            ppid *= 1000
            if pid in processMap:
                process = processMap[pid]
                process.cmd = cmd.strip('()') # why rename after latest name??
            else:
                process = Process(writer, pid, cmd.strip('()'), ppid, min(time, stime))
                processMap[pid] = process

            if process.last_user_cpu_time is not None and process.last_sys_cpu_time is not None and ltime is not None:
                userCpuLoad, sysCpuLoad = process.calc_load(userCpu, sysCpu, max(1, time - ltime))
                cpuSample = CPUSample('null', userCpuLoad, sysCpuLoad, 0.0)
                process.samples.append(ProcessSample(time, state, cpuSample))

            process.last_user_cpu_time = userCpu
            process.last_sys_cpu_time = sysCpu
        ltime = time

    if len (timed_blocks) < 2:
        return None

    startTime = timed_blocks[0][0]
    avgSampleLength = (ltime - startTime)/(len (timed_blocks) - 1)

    return ProcessStats (writer, processMap, len (timed_blocks), avgSampleLength, startTime, ltime)

def _parse_taskstats_log(writer, file):
    """
     * See bootchart-collector.c for details.
     *
     * { pid, ppid, comm, cpu_run_real_total, blkio_delay_total, swapin_delay_total }
     *
    """
    processMap = {}
    pidRewrites = {}
    ltime = None
    timed_blocks = _parse_timed_blocks(file)
    for time, lines in timed_blocks:
        # we have no 'stime' from taskstats, so prep 'init'
        if ltime is None:
            process = Process(writer, 1, '[init]', 0, 0)
            processMap[1000] = process
            ltime = time
#                       continue
        for line in lines:
            if not line: continue
            tokens = line.split(' ')
            if len(tokens) != 6:
                continue

            opid, ppid, cmd = int(tokens[0]), int(tokens[1]), tokens[2]
            cpu_ns, blkio_delay_ns, swapin_delay_ns = long(tokens[-3]), long(tokens[-2]), long(tokens[-1]),

            # make space for trees of pids
            opid *= 1000
            ppid *= 1000

            # when the process name changes, we re-write the pid.
            if opid in pidRewrites:
                pid = pidRewrites[opid]
            else:
                pid = opid

            cmd = cmd.strip('(').strip(')')
            if pid in processMap:
                process = processMap[pid]
                if process.cmd != cmd:
                    pid += 1
                    pidRewrites[opid] = pid
#                                       print "process mutation ! '%s' vs '%s' pid %s -> pid %s\n" % (process.cmd, cmd, opid, pid)
                    process = process.split (writer, pid, cmd, ppid, time)
                    processMap[pid] = process
                else:
                    process.cmd = cmd;
            else:
                process = Process(writer, pid, cmd, ppid, time)
                processMap[pid] = process

            delta_cpu_ns = (float) (cpu_ns - process.last_cpu_ns)
            delta_blkio_delay_ns = (float) (blkio_delay_ns - process.last_blkio_delay_ns)
            delta_swapin_delay_ns = (float) (swapin_delay_ns - process.last_swapin_delay_ns)

            # make up some state data ...
            if delta_cpu_ns > 0:
                state = "R"
            elif delta_blkio_delay_ns + delta_swapin_delay_ns > 0:
                state = "D"
            else:
                state = "S"

            # retain the ns timing information into a CPUSample - that tries
            # with the old-style to be a %age of CPU used in this time-slice.
            if delta_cpu_ns + delta_blkio_delay_ns + delta_swapin_delay_ns > 0:
#                               print "proc %s cpu_ns %g delta_cpu %g" % (cmd, cpu_ns, delta_cpu_ns)
                cpuSample = CPUSample('null', delta_cpu_ns, 0.0,
                                      delta_blkio_delay_ns,
                                      delta_swapin_delay_ns)
                process.samples.append(ProcessSample(time, state, cpuSample))

            process.last_cpu_ns = cpu_ns
            process.last_blkio_delay_ns = blkio_delay_ns
            process.last_swapin_delay_ns = swapin_delay_ns
        ltime = time

    if len (timed_blocks) < 2:
        return None

    startTime = timed_blocks[0][0]
    avgSampleLength = (ltime - startTime)/(len(timed_blocks)-1)

    return ProcessStats (writer, processMap, len (timed_blocks), avgSampleLength, startTime, ltime)

def _parse_proc_stat_log(file):
    samples = []
    ltimes = None
    for time, lines in _parse_timed_blocks(file):
        # skip emtpy lines
        if not lines:
            continue
        # CPU times {user, nice, system, idle, io_wait, irq, softirq}
        tokens = lines[0].split()
        times = [ int(token) for token in tokens[1:] ]
        if ltimes:
            user = float((times[0] + times[1]) - (ltimes[0] + ltimes[1]))
            system = float((times[2] + times[5] + times[6]) - (ltimes[2] + ltimes[5] + ltimes[6]))
            idle = float(times[3] - ltimes[3])
            iowait = float(times[4] - ltimes[4])

            aSum = max(user + system + idle + iowait, 1)
            samples.append( CPUSample(time, user/aSum, system/aSum, iowait/aSum) )

        ltimes = times
        # skip the rest of statistics lines
    return samples

def _parse_reduced_log(file, sample_class):
    samples = []
    for time, lines in _parse_timed_blocks(file):
        samples.append(sample_class(time, *[float(x) for x in lines[0].split()]))
    return samples

def _parse_proc_disk_stat_log(file):
    """
    Parse file for disk stats, but only look at the whole device, eg. sda,
    not sda1, sda2 etc. The format of relevant lines should be:
    {major minor name rio rmerge rsect ruse wio wmerge wsect wuse running use aveq}
    """
    disk_regex_re = re.compile ('^([hsv]d.|mtdblock\d|mmcblk\d|cciss/c\d+d\d+.*)$')

    # this gets called an awful lot.
    def is_relevant_line(linetokens):
        if len(linetokens) != 14:
            return False
        disk = linetokens[2]
        return disk_regex_re.match(disk)

    disk_stat_samples = []

    for time, lines in _parse_timed_blocks(file):
        sample = DiskStatSample(time)
        relevant_tokens = [linetokens for linetokens in map (lambda x: x.split(),lines) if is_relevant_line(linetokens)]

        for tokens in relevant_tokens:
            disk, rsect, wsect, use = tokens[2], int(tokens[5]), int(tokens[9]), int(tokens[12])
            sample.add_diskdata([rsect, wsect, use])

        disk_stat_samples.append(sample)

    disk_stats = []
    for sample1, sample2 in zip(disk_stat_samples[:-1], disk_stat_samples[1:]):
        interval = sample1.time - sample2.time
        if interval == 0:
            interval = 1
        sums = [ a - b for a, b in zip(sample1.diskdata, sample2.diskdata) ]
        readTput = sums[0] / 2.0 * 100.0 / interval
        writeTput = sums[1] / 2.0 * 100.0 / interval
        util = float( sums[2] ) / 10 / interval
        util = max(0.0, min(1.0, util))
        disk_stats.append(DiskSample(sample2.time, readTput, writeTput, util))

    return disk_stats

def _parse_reduced_proc_meminfo_log(file):
    """
    Parse file for global memory statistics with
    'MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree' values
    (in that order) directly stored on one line.
    """
    used_values = ('MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree',)

    mem_stats = []
    for time, lines in _parse_timed_blocks(file):
        sample = MemSample(time)
        for name, value in zip(used_values, lines[0].split()):
            sample.add_value(name, int(value))

        if sample.valid():
            mem_stats.append(DrawMemSample(sample))

    return mem_stats

def _parse_proc_meminfo_log(file):
    """
    Parse file for global memory statistics.
    The format of relevant lines should be: ^key: value( unit)?
    """
    used_values = ('MemTotal', 'MemFree', 'Buffers', 'Cached', 'SwapTotal', 'SwapFree',)

    mem_stats = []
    meminfo_re = re.compile(r'([^ \t:]+):\s*(\d+).*')

    for time, lines in _parse_timed_blocks(file):
        sample = MemSample(time)

        for line in lines:
            match = meminfo_re.match(line)
            if not match:
                raise ParseError("Invalid meminfo line \"%s\"" % line)
            sample.add_value(match.group(1), int(match.group(2)))

        if sample.valid():
            mem_stats.append(DrawMemSample(sample))

    return mem_stats

def _parse_monitor_disk_log(file):
    """
    Parse file with information about amount of diskspace used.
    The format of relevant lines should be: ^volume path: number-of-bytes?
    """
    disk_stats = []
    diskinfo_re = re.compile(r'^(.+):\s*(\d+)$')

    for time, lines in _parse_timed_blocks(file):
        sample = DiskSpaceSample(time)

        for line in lines:
            match = diskinfo_re.match(line)
            if not match:
                raise ParseError("Invalid monitor_disk line \"%s\"" % line)
            sample.add_value(match.group(1), int(match.group(2)))

        if sample.valid():
            disk_stats.append(sample)

    return disk_stats


# if we boot the kernel with: initcall_debug printk.time=1 we can
# get all manner of interesting data from the dmesg output
# We turn this into a pseudo-process tree: each event is
# characterised by a
# we don't try to detect a "kernel finished" state - since the kernel
# continues to do interesting things after init is called.
#
# sample input:
# [    0.000000] ACPI: FACP 3f4fc000 000F4 (v04 INTEL  Napa     00000001 MSFT 01000013)
# ...
# [    0.039993] calling  migration_init+0x0/0x6b @ 1
# [    0.039993] initcall migration_init+0x0/0x6b returned 1 after 0 usecs
def _parse_dmesg(writer, file):
    timestamp_re = re.compile ("^\[\s*(\d+\.\d+)\s*]\s+(.*)$")
    split_re = re.compile ("^(\S+)\s+([\S\+_-]+) (.*)$")
    processMap = {}
    idx = 0
    inc = 1.0 / 1000000
    kernel = Process(writer, idx, "k-boot", 0, 0.1)
    processMap['k-boot'] = kernel
    base_ts = False
    max_ts = 0
    for line in file.read().decode('utf-8').split('\n'):
        t = timestamp_re.match (line)
        if t is None:
#                       print "duff timestamp " + line
            continue

        time_ms = float (t.group(1)) * 1000
        # looks like we may have a huge diff after the clock
        # has been set up. This could lead to huge graph:
        # so huge we will be killed by the OOM.
        # So instead of using the plain timestamp we will
        # use a delta to first one and skip the first one
        # for convenience
        if max_ts == 0 and not base_ts and time_ms > 1000:
            base_ts = time_ms
            continue
        max_ts = max(time_ms, max_ts)
        if base_ts:
#                       print "fscked clock: used %f instead of %f" % (time_ms - base_ts, time_ms)
            time_ms -= base_ts
        m = split_re.match (t.group(2))

        if m is None:
            continue
#               print "match: '%s'" % (m.group(1))
        type = m.group(1)
        func = m.group(2)
        rest = m.group(3)

        if t.group(2).startswith ('Write protecting the') or \
           t.group(2).startswith ('Freeing unused kernel memory'):
            kernel.duration = time_ms / 10
            continue

#               print "foo: '%s' '%s' '%s'" % (type, func, rest)
        if type == "calling":
            ppid = kernel.pid
            p = re.match ("\@ (\d+)", rest)
            if p is not None:
                ppid = float (p.group(1)) // 1000
#                               print "match: '%s' ('%g') at '%s'" % (func, ppid, time_ms)
            name = func.split ('+', 1) [0]
            idx += inc
            processMap[func] = Process(writer, ppid + idx, name, ppid, time_ms / 10)
        elif type == "initcall":
#                       print "finished: '%s' at '%s'" % (func, time_ms)
            if func in processMap:
                process = processMap[func]
                process.duration = (time_ms / 10) - process.start_time
            else:
                print("corrupted init call for %s" % (func))

        elif type == "async_waiting" or type == "async_continuing":
            continue # ignore

    return processMap.values()

#
# Parse binary pacct accounting file output if we have one
# cf. /usr/include/linux/acct.h
#
def _parse_pacct(writer, file):
    # read LE int32
    def _read_le_int32(file):
        byts = file.read(4)
        return (ord(byts[0]))       | (ord(byts[1]) << 8) | \
               (ord(byts[2]) << 16) | (ord(byts[3]) << 24)

    parent_map = {}
    parent_map[0] = 0
    while file.read(1) != "": # ignore flags
        ver = file.read(1)
        if ord(ver) < 3:
            print("Invalid version 0x%x" % (ord(ver)))
            return None

        file.seek (14, 1)     # user, group etc.
        pid = _read_le_int32 (file)
        ppid = _read_le_int32 (file)
#               print "Parent of %d is %d" % (pid, ppid)
        parent_map[pid] = ppid
        file.seek (4 + 4 + 16, 1) # timings
        file.seek (16, 1)         # acct_comm
    return parent_map

def _parse_paternity_log(writer, file):
    parent_map = {}
    parent_map[0] = 0
    for line in file.read().decode('utf-8').split('\n'):
        if not line:
            continue
        elems = line.split(' ') # <Child> <Parent>
        if len (elems) >= 2:
#                       print "paternity of %d is %d" % (int(elems[0]), int(elems[1]))
            parent_map[int(elems[0])] = int(elems[1])
        else:
            print("Odd paternity line '%s'" % (line))
    return parent_map

def _parse_cmdline_log(writer, file):
    cmdLines = {}
    for block in file.read().decode('utf-8').split('\n\n'):
        lines = block.split('\n')
        if len (lines) >= 3:
#                       print "Lines '%s'" % (lines[0])
            pid = int (lines[0])
            values = {}
            values['exe'] = lines[1].lstrip(':')
            args = lines[2].lstrip(':').split('\0')
            args.pop()
            values['args'] = args
            cmdLines[pid] = values
    return cmdLines

def _parse_bitbake_buildstats(writer, state, filename, file):
    paths = filename.split("/")
    task = paths[-1]
    pn = paths[-2]
    start = None
    end = None
    for line in file:
        if line.startswith("Started:"):
            start = int(float(line.split()[-1]))
        elif line.startswith("Ended:"):
            end = int(float(line.split()[-1]))
    if start and end:
        state.add_process(pn + ":" + task, start, end)

def get_num_cpus(headers):
    """Get the number of CPUs from the system.cpu header property. As the
    CPU utilization graphs are relative, the number of CPUs currently makes
    no difference."""
    if headers is None:
        return 1
    if headers.get("system.cpu.num"):
        return max (int (headers.get("system.cpu.num")), 1)
    cpu_model = headers.get("system.cpu")
    if cpu_model is None:
        return 1
    mat = re.match(".*\\((\\d+)\\)", cpu_model)
    if mat is None:
        return 1
    return max (int(mat.group(1)), 1)

def _do_parse(writer, state, filename, file):
    writer.info("parsing '%s'" % filename)
    t1 = clock()
    name = os.path.basename(filename)
    if name == "proc_diskstats.log":
        state.disk_stats = _parse_proc_disk_stat_log(file)
    elif name == "reduced_proc_diskstats.log":
        state.disk_stats = _parse_reduced_log(file, DiskSample)
    elif name == "proc_stat.log":
        state.cpu_stats = _parse_proc_stat_log(file)
    elif name == "reduced_proc_stat.log":
        state.cpu_stats = _parse_reduced_log(file, CPUSample)
    elif name == "proc_meminfo.log":
        state.mem_stats = _parse_proc_meminfo_log(file)
    elif name == "reduced_proc_meminfo.log":
        state.mem_stats = _parse_reduced_proc_meminfo_log(file)
    elif name == "cmdline2.log":
        state.cmdline = _parse_cmdline_log(writer, file)
    elif name == "monitor_disk.log":
        state.monitor_disk = _parse_monitor_disk_log(file)
    elif not filename.endswith('.log'):
        _parse_bitbake_buildstats(writer, state, filename, file)
    t2 = clock()
    writer.info("  %s seconds" % str(t2-t1))
    return state

def parse_file(writer, state, filename):
    if state.filename is None:
        state.filename = filename
    basename = os.path.basename(filename)
    with open(filename, "rb") as file:
        return _do_parse(writer, state, filename, file)

def parse_paths(writer, state, paths):
    for path in paths:
        if state.filename is None:
            state.filename = path
        root, extension = os.path.splitext(path)
        if not(os.path.exists(path)):
            writer.warn("warning: path '%s' does not exist, ignoring." % path)
            continue
        #state.filename = path
        if os.path.isdir(path):
            files = sorted([os.path.join(path, f) for f in os.listdir(path)])
            state = parse_paths(writer, state, files)
        elif extension in [".tar", ".tgz", ".gz"]:
            if extension == ".gz":
                root, extension = os.path.splitext(root)
                if extension != ".tar":
                    writer.warn("warning: can only handle zipped tar files, not zipped '%s'-files; ignoring" % extension)
                    continue
            tf = None
            try:
                writer.status("parsing '%s'" % path)
                tf = tarfile.open(path, 'r:*')
                for name in tf.getnames():
                    state = _do_parse(writer, state, name, tf.extractfile(name))
            except tarfile.ReadError as error:
                raise ParseError("error: could not read tarfile '%s': %s." % (path, error))
            finally:
                if tf != None:
                    tf.close()
        else:
            state = parse_file(writer, state, path)
    return state

def split_res(res, options):
    """ Split the res into n pieces """
    res_list = []
    if options.num > 1:
        s_list = sorted(res.start.keys())
        frag_size = len(s_list) / float(options.num)
        # Need the top value
        if frag_size > int(frag_size):
            frag_size = int(frag_size + 1)
        else:
            frag_size = int(frag_size)

        start = 0
        end = frag_size
        while start < end:
            state = Trace(None, [], None)
            if options.full_time:
                state.min = min(res.start.keys())
                state.max = max(res.end.keys())
            for i in range(start, end):
                # Add this line for reference
                #state.add_process(pn + ":" + task, start, end)
                for p in res.start[s_list[i]]:
                    state.add_process(p, s_list[i], res.processes[p][1])
            start = end
            end = end + frag_size
            if end > len(s_list):
                end = len(s_list)
            res_list.append(state)
    else:
        res_list.append(res)
    return res_list