# This file is part of pybootchartgui. # pybootchartgui is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # pybootchartgui is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with pybootchartgui. If not, see . import cairo import math import re import random import colorsys from operator import itemgetter class RenderOptions: def __init__(self, app_options): # should we render a cumulative CPU time chart self.cumulative = True self.charts = True self.kernel_only = False self.app_options = app_options def proc_tree (self, trace): if self.kernel_only: return trace.kernel_tree else: return trace.proc_tree # Process tree background color. BACK_COLOR = (1.0, 1.0, 1.0, 1.0) WHITE = (1.0, 1.0, 1.0, 1.0) # Process tree border color. BORDER_COLOR = (0.63, 0.63, 0.63, 1.0) # Second tick line color. TICK_COLOR = (0.92, 0.92, 0.92, 1.0) # 5-second tick line color. TICK_COLOR_BOLD = (0.86, 0.86, 0.86, 1.0) # Annotation colour ANNOTATION_COLOR = (0.63, 0.0, 0.0, 0.5) # Text color. TEXT_COLOR = (0.0, 0.0, 0.0, 1.0) # Font family FONT_NAME = "Bitstream Vera Sans" # Title text font. TITLE_FONT_SIZE = 18 # Default text font. TEXT_FONT_SIZE = 12 # Axis label font. AXIS_FONT_SIZE = 11 # Legend font. LEGEND_FONT_SIZE = 12 # CPU load chart color. CPU_COLOR = (0.40, 0.55, 0.70, 1.0) # IO wait chart color. IO_COLOR = (0.76, 0.48, 0.48, 0.5) # Disk throughput color. DISK_TPUT_COLOR = (0.20, 0.71, 0.20, 1.0) # CPU load chart color. FILE_OPEN_COLOR = (0.20, 0.71, 0.71, 1.0) # Mem cached color MEM_CACHED_COLOR = CPU_COLOR # Mem used color MEM_USED_COLOR = IO_COLOR # Buffers color MEM_BUFFERS_COLOR = (0.4, 0.4, 0.4, 0.3) # Swap color MEM_SWAP_COLOR = DISK_TPUT_COLOR # Process border color. PROC_BORDER_COLOR = (0.71, 0.71, 0.71, 1.0) # Waiting process color. PROC_COLOR_D = (0.76, 0.48, 0.48, 0.5) # Running process color. PROC_COLOR_R = CPU_COLOR # Sleeping process color. PROC_COLOR_S = (0.94, 0.94, 0.94, 1.0) # Stopped process color. PROC_COLOR_T = (0.94, 0.50, 0.50, 1.0) # Zombie process color. PROC_COLOR_Z = (0.71, 0.71, 0.71, 1.0) # Dead process color. PROC_COLOR_X = (0.71, 0.71, 0.71, 0.125) # Paging process color. PROC_COLOR_W = (0.71, 0.71, 0.71, 0.125) # Process label color. PROC_TEXT_COLOR = (0.19, 0.19, 0.19, 1.0) # Process label font. PROC_TEXT_FONT_SIZE = 12 # Signature color. SIG_COLOR = (0.0, 0.0, 0.0, 0.3125) # Signature font. SIG_FONT_SIZE = 14 # Signature text. SIGNATURE = "http://github.com/mmeeks/bootchart" # Process dependency line color. DEP_COLOR = (0.75, 0.75, 0.75, 1.0) # Process dependency line stroke. DEP_STROKE = 1.0 # Process description date format. DESC_TIME_FORMAT = "mm:ss.SSS" # Cumulative coloring bits HSV_MAX_MOD = 31 HSV_STEP = 7 # Configure task color TASK_COLOR_CONFIGURE = (1.0, 1.0, 0.00, 1.0) # Compile task color. TASK_COLOR_COMPILE = (0.0, 1.00, 0.00, 1.0) # Install task color TASK_COLOR_INSTALL = (1.0, 0.00, 1.00, 1.0) # Sysroot task color TASK_COLOR_SYSROOT = (0.0, 0.00, 1.00, 1.0) # Package task color TASK_COLOR_PACKAGE = (0.0, 1.00, 1.00, 1.0) # Package Write RPM/DEB/IPK task color TASK_COLOR_PACKAGE_WRITE = (0.0, 0.50, 0.50, 1.0) # Distinct colors used for different disk volumnes. # If we have more volumns, colors get re-used. VOLUME_COLORS = [ (1.0, 1.0, 0.00, 1.0), (0.0, 1.00, 0.00, 1.0), (1.0, 0.00, 1.00, 1.0), (0.0, 0.00, 1.00, 1.0), (0.0, 1.00, 1.00, 1.0), ] # Process states STATE_UNDEFINED = 0 STATE_RUNNING = 1 STATE_SLEEPING = 2 STATE_WAITING = 3 STATE_STOPPED = 4 STATE_ZOMBIE = 5 STATE_COLORS = [(0, 0, 0, 0), PROC_COLOR_R, PROC_COLOR_S, PROC_COLOR_D, \ PROC_COLOR_T, PROC_COLOR_Z, PROC_COLOR_X, PROC_COLOR_W] # CumulativeStats Types STAT_TYPE_CPU = 0 STAT_TYPE_IO = 1 # Convert ps process state to an int def get_proc_state(flag): return "RSDTZXW".find(flag) + 1 def draw_text(ctx, text, color, x, y): ctx.set_source_rgba(*color) ctx.move_to(x, y) ctx.show_text(text) def draw_fill_rect(ctx, color, rect): ctx.set_source_rgba(*color) ctx.rectangle(*rect) ctx.fill() def draw_rect(ctx, color, rect): ctx.set_source_rgba(*color) ctx.rectangle(*rect) ctx.stroke() def draw_legend_box(ctx, label, fill_color, x, y, s): draw_fill_rect(ctx, fill_color, (x, y - s, s, s)) draw_rect(ctx, PROC_BORDER_COLOR, (x, y - s, s, s)) draw_text(ctx, label, TEXT_COLOR, x + s + 5, y) def draw_legend_line(ctx, label, fill_color, x, y, s): draw_fill_rect(ctx, fill_color, (x, y - s/2, s + 1, 3)) ctx.arc(x + (s + 1)/2.0, y - (s - 3)/2.0, 2.5, 0, 2.0 * math.pi) ctx.fill() draw_text(ctx, label, TEXT_COLOR, x + s + 5, y) def draw_label_in_box(ctx, color, label, x, y, w, maxx): label_w = ctx.text_extents(label)[2] label_x = x + w / 2 - label_w / 2 if label_w + 10 > w: label_x = x + w + 5 if label_x + label_w > maxx: label_x = x - label_w - 5 draw_text(ctx, label, color, label_x, y) def draw_sec_labels(ctx, options, rect, sec_w, nsecs): ctx.set_font_size(AXIS_FONT_SIZE) prev_x = 0 for i in range(0, rect[2] + 1, sec_w): if ((i / sec_w) % nsecs == 0) : if options.app_options.as_minutes : label = "%.1f" % (i / sec_w / 60.0) else : label = "%d" % (i / sec_w) label_w = ctx.text_extents(label)[2] x = rect[0] + i - label_w/2 if x >= prev_x: draw_text(ctx, label, TEXT_COLOR, x, rect[1] - 2) prev_x = x + label_w def draw_box_ticks(ctx, rect, sec_w): draw_rect(ctx, BORDER_COLOR, tuple(rect)) ctx.set_line_cap(cairo.LINE_CAP_SQUARE) for i in range(sec_w, rect[2] + 1, sec_w): if ((i / sec_w) % 10 == 0) : ctx.set_line_width(1.5) elif sec_w < 5 : continue else : ctx.set_line_width(1.0) if ((i / sec_w) % 30 == 0) : ctx.set_source_rgba(*TICK_COLOR_BOLD) else : ctx.set_source_rgba(*TICK_COLOR) ctx.move_to(rect[0] + i, rect[1] + 1) ctx.line_to(rect[0] + i, rect[1] + rect[3] - 1) ctx.stroke() ctx.set_line_width(1.0) ctx.set_line_cap(cairo.LINE_CAP_BUTT) def draw_annotations(ctx, proc_tree, times, rect): ctx.set_line_cap(cairo.LINE_CAP_SQUARE) ctx.set_source_rgba(*ANNOTATION_COLOR) ctx.set_dash([4, 4]) for time in times: if time is not None: x = ((time - proc_tree.start_time) * rect[2] / proc_tree.duration) ctx.move_to(rect[0] + x, rect[1] + 1) ctx.line_to(rect[0] + x, rect[1] + rect[3] - 1) ctx.stroke() ctx.set_line_cap(cairo.LINE_CAP_BUTT) ctx.set_dash([]) def draw_chart(ctx, color, fill, chart_bounds, data, proc_tree, data_range): ctx.set_line_width(0.5) x_shift = proc_tree.start_time def transform_point_coords(point, x_base, y_base, \ xscale, yscale, x_trans, y_trans): x = (point[0] - x_base) * xscale + x_trans y = (point[1] - y_base) * -yscale + y_trans + chart_bounds[3] return x, y max_x = max (x for (x, y) in data) max_y = max (y for (x, y) in data) # avoid divide by zero if max_y == 0: max_y = 1.0 xscale = float (chart_bounds[2]) / (max_x - x_shift) # If data_range is given, scale the chart so that the value range in # data_range matches the chart bounds exactly. # Otherwise, scale so that the actual data matches the chart bounds. if data_range: yscale = float(chart_bounds[3]) / (data_range[1] - data_range[0]) ybase = data_range[0] else: yscale = float(chart_bounds[3]) / max_y ybase = 0 first = transform_point_coords (data[0], x_shift, ybase, xscale, yscale, \ chart_bounds[0], chart_bounds[1]) last = transform_point_coords (data[-1], x_shift, ybase, xscale, yscale, \ chart_bounds[0], chart_bounds[1]) ctx.set_source_rgba(*color) ctx.move_to(*first) for point in data: x, y = transform_point_coords (point, x_shift, ybase, xscale, yscale, \ chart_bounds[0], chart_bounds[1]) ctx.line_to(x, y) if fill: ctx.stroke_preserve() ctx.line_to(last[0], chart_bounds[1]+chart_bounds[3]) ctx.line_to(first[0], chart_bounds[1]+chart_bounds[3]) ctx.line_to(first[0], first[1]) ctx.fill() else: ctx.stroke() ctx.set_line_width(1.0) bar_h = 55 meminfo_bar_h = 2 * bar_h header_h = 60 # offsets off_x, off_y = 220, 10 sec_w_base = 1 # the width of a second proc_h = 16 # the height of a process leg_s = 10 MIN_IMG_W = 800 CUML_HEIGHT = 2000 # Increased value to accomodate CPU and I/O Graphs OPTIONS = None def extents(options, xscale, trace): start = min(trace.start.keys()) end = start processes = 0 for proc in trace.processes: if not options.app_options.show_all and \ trace.processes[proc][1] - trace.processes[proc][0] < options.app_options.mintime: continue if trace.processes[proc][1] > end: end = trace.processes[proc][1] processes += 1 if trace.min is not None and trace.max is not None: start = trace.min end = trace.max w = int ((end - start) * sec_w_base * xscale) + 2 * off_x h = proc_h * processes + header_h + 2 * off_y if options.charts: if trace.cpu_stats: h += 30 + bar_h if trace.disk_stats: h += 30 + bar_h if trace.monitor_disk: h += 30 + bar_h if trace.mem_stats: h += meminfo_bar_h return (w, h) def clip_visible(clip, rect): xmax = max (clip[0], rect[0]) ymax = max (clip[1], rect[1]) xmin = min (clip[0] + clip[2], rect[0] + rect[2]) ymin = min (clip[1] + clip[3], rect[1] + rect[3]) return (xmin > xmax and ymin > ymax) def render_charts(ctx, options, clip, trace, curr_y, w, h, sec_w): proc_tree = options.proc_tree(trace) # render bar legend if trace.cpu_stats: ctx.set_font_size(LEGEND_FONT_SIZE) draw_legend_box(ctx, "CPU (user+sys)", CPU_COLOR, off_x, curr_y+20, leg_s) draw_legend_box(ctx, "I/O (wait)", IO_COLOR, off_x + 120, curr_y+20, leg_s) # render I/O wait chart_rect = (off_x, curr_y+30, w, bar_h) if clip_visible (clip, chart_rect): draw_box_ticks (ctx, chart_rect, sec_w) draw_annotations (ctx, proc_tree, trace.times, chart_rect) draw_chart (ctx, IO_COLOR, True, chart_rect, \ [(sample.time, sample.user + sample.sys + sample.io) for sample in trace.cpu_stats], \ proc_tree, None) # render CPU load draw_chart (ctx, CPU_COLOR, True, chart_rect, \ [(sample.time, sample.user + sample.sys) for sample in trace.cpu_stats], \ proc_tree, None) curr_y = curr_y + 30 + bar_h # render second chart if trace.disk_stats: draw_legend_line(ctx, "Disk throughput", DISK_TPUT_COLOR, off_x, curr_y+20, leg_s) draw_legend_box(ctx, "Disk utilization", IO_COLOR, off_x + 120, curr_y+20, leg_s) # render I/O utilization chart_rect = (off_x, curr_y+30, w, bar_h) if clip_visible (clip, chart_rect): draw_box_ticks (ctx, chart_rect, sec_w) draw_annotations (ctx, proc_tree, trace.times, chart_rect) draw_chart (ctx, IO_COLOR, True, chart_rect, \ [(sample.time, sample.util) for sample in trace.disk_stats], \ proc_tree, None) # render disk throughput max_sample = max (trace.disk_stats, key = lambda s: s.tput) if clip_visible (clip, chart_rect): draw_chart (ctx, DISK_TPUT_COLOR, False, chart_rect, \ [(sample.time, sample.tput) for sample in trace.disk_stats], \ proc_tree, None) pos_x = off_x + ((max_sample.time - proc_tree.start_time) * w / proc_tree.duration) shift_x, shift_y = -20, 20 if (pos_x < off_x + 245): shift_x, shift_y = 5, 40 label = "%dMB/s" % round ((max_sample.tput) / 1024.0) draw_text (ctx, label, DISK_TPUT_COLOR, pos_x + shift_x, curr_y + shift_y) curr_y = curr_y + 30 + bar_h # render disk space usage # # Draws the amount of disk space used on each volume relative to the # lowest recorded amount. The graphs for each volume are stacked above # each other so that total disk usage is visible. if trace.monitor_disk: ctx.set_font_size(LEGEND_FONT_SIZE) # Determine set of volumes for which we have # information and the minimal amount of used disk # space for each. Currently samples are allowed to # not have a values for all volumes; drawing could be # made more efficient if that wasn't the case. volumes = set() min_used = {} for sample in trace.monitor_disk: for volume, used in sample.records.items(): volumes.add(volume) if volume not in min_used or min_used[volume] > used: min_used[volume] = used volumes = sorted(list(volumes)) disk_scale = 0 for i, volume in enumerate(volumes): volume_scale = max([sample.records[volume] - min_used[volume] for sample in trace.monitor_disk if volume in sample.records]) # Does not take length of volume name into account, but fixed offset # works okay in practice. draw_legend_box(ctx, '%s (max: %u MiB)' % (volume, volume_scale / 1024 / 1024), VOLUME_COLORS[i % len(VOLUME_COLORS)], off_x + i * 250, curr_y+20, leg_s) disk_scale += volume_scale # render used amount of disk space chart_rect = (off_x, curr_y+30, w, bar_h) if clip_visible (clip, chart_rect): draw_box_ticks (ctx, chart_rect, sec_w) draw_annotations (ctx, proc_tree, trace.times, chart_rect) for i in range(len(volumes), 0, -1): draw_chart (ctx, VOLUME_COLORS[(i - 1) % len(VOLUME_COLORS)], True, chart_rect, \ [(sample.time, # Sum up used space of all volumes including the current one # so that the graphs appear as stacked on top of each other. reduce(lambda x,y: x+y, [sample.records[volume] - min_used[volume] for volume in volumes[0:i] if volume in sample.records], 0)) for sample in trace.monitor_disk], \ proc_tree, [0, disk_scale]) curr_y = curr_y + 30 + bar_h # render mem usage chart_rect = (off_x, curr_y+30, w, meminfo_bar_h) mem_stats = trace.mem_stats if mem_stats and clip_visible (clip, chart_rect): mem_scale = max(sample.buffers for sample in mem_stats) draw_legend_box(ctx, "Mem cached (scale: %u MiB)" % (float(mem_scale) / 1024), MEM_CACHED_COLOR, off_x, curr_y+20, leg_s) draw_legend_box(ctx, "Used", MEM_USED_COLOR, off_x + 240, curr_y+20, leg_s) draw_legend_box(ctx, "Buffers", MEM_BUFFERS_COLOR, off_x + 360, curr_y+20, leg_s) draw_legend_line(ctx, "Swap (scale: %u MiB)" % max([(sample.swap)/1024 for sample in mem_stats]), \ MEM_SWAP_COLOR, off_x + 480, curr_y+20, leg_s) draw_box_ticks(ctx, chart_rect, sec_w) draw_annotations(ctx, proc_tree, trace.times, chart_rect) draw_chart(ctx, MEM_BUFFERS_COLOR, True, chart_rect, \ [(sample.time, sample.buffers) for sample in trace.mem_stats], \ proc_tree, [0, mem_scale]) draw_chart(ctx, MEM_USED_COLOR, True, chart_rect, \ [(sample.time, sample.used) for sample in mem_stats], \ proc_tree, [0, mem_scale]) draw_chart(ctx, MEM_CACHED_COLOR, True, chart_rect, \ [(sample.time, sample.cached) for sample in mem_stats], \ proc_tree, [0, mem_scale]) draw_chart(ctx, MEM_SWAP_COLOR, False, chart_rect, \ [(sample.time, float(sample.swap)) for sample in mem_stats], \ proc_tree, None) curr_y = curr_y + meminfo_bar_h return curr_y def render_processes_chart(ctx, options, trace, curr_y, w, h, sec_w): chart_rect = [off_x, curr_y+header_h, w, h - 2 * off_y - header_h - leg_s + proc_h] draw_legend_box (ctx, "Configure", \ TASK_COLOR_CONFIGURE, off_x , curr_y + 45, leg_s) draw_legend_box (ctx, "Compile", \ TASK_COLOR_COMPILE, off_x+120, curr_y + 45, leg_s) draw_legend_box (ctx, "Install", \ TASK_COLOR_INSTALL, off_x+240, curr_y + 45, leg_s) draw_legend_box (ctx, "Populate Sysroot", \ TASK_COLOR_SYSROOT, off_x+360, curr_y + 45, leg_s) draw_legend_box (ctx, "Package", \ TASK_COLOR_PACKAGE, off_x+480, curr_y + 45, leg_s) draw_legend_box (ctx, "Package Write", TASK_COLOR_PACKAGE_WRITE, off_x+600, curr_y + 45, leg_s) ctx.set_font_size(PROC_TEXT_FONT_SIZE) draw_box_ticks(ctx, chart_rect, sec_w) draw_sec_labels(ctx, options, chart_rect, sec_w, 30) y = curr_y+header_h offset = trace.min or min(trace.start.keys()) for s in sorted(trace.start.keys()): for val in sorted(trace.start[s]): if not options.app_options.show_all and \ trace.processes[val][1] - s < options.app_options.mintime: continue task = val.split(":")[1] #print val #print trace.processes[val][1] #print s x = chart_rect[0] + (s - offset) * sec_w w = ((trace.processes[val][1] - s) * sec_w) #print "proc at %s %s %s %s" % (x, y, w, proc_h) col = None if task == "do_compile": col = TASK_COLOR_COMPILE elif task == "do_configure": col = TASK_COLOR_CONFIGURE elif task == "do_install": col = TASK_COLOR_INSTALL elif task == "do_populate_sysroot": col = TASK_COLOR_SYSROOT elif task == "do_package": col = TASK_COLOR_PACKAGE elif task == "do_package_write_rpm" or \ task == "do_package_write_deb" or \ task == "do_package_write_ipk": col = TASK_COLOR_PACKAGE_WRITE else: col = WHITE if col: draw_fill_rect(ctx, col, (x, y, w, proc_h)) draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h)) draw_label_in_box(ctx, PROC_TEXT_COLOR, val, x, y + proc_h - 4, w, proc_h) y = y + proc_h return curr_y # # Render the chart. # def render(ctx, options, xscale, trace): (w, h) = extents (options, xscale, trace) global OPTIONS OPTIONS = options.app_options # x, y, w, h clip = ctx.clip_extents() sec_w = int (xscale * sec_w_base) ctx.set_line_width(1.0) ctx.select_font_face(FONT_NAME) draw_fill_rect(ctx, WHITE, (0, 0, max(w, MIN_IMG_W), h)) w -= 2*off_x curr_y = off_y; if options.charts: curr_y = render_charts (ctx, options, clip, trace, curr_y, w, h, sec_w) curr_y = render_processes_chart (ctx, options, trace, curr_y, w, h, sec_w) return proc_tree = options.proc_tree (trace) # draw the title and headers if proc_tree.idle: duration = proc_tree.idle else: duration = proc_tree.duration if not options.kernel_only: curr_y = draw_header (ctx, trace.headers, duration) else: curr_y = off_y; # draw process boxes proc_height = h if proc_tree.taskstats and options.cumulative: proc_height -= CUML_HEIGHT draw_process_bar_chart(ctx, clip, options, proc_tree, trace.times, curr_y, w, proc_height, sec_w) curr_y = proc_height ctx.set_font_size(SIG_FONT_SIZE) draw_text(ctx, SIGNATURE, SIG_COLOR, off_x + 5, proc_height - 8) # draw a cumulative CPU-time-per-process graph if proc_tree.taskstats and options.cumulative: cuml_rect = (off_x, curr_y + off_y, w, CUML_HEIGHT/2 - off_y * 2) if clip_visible (clip, cuml_rect): draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_CPU) # draw a cumulative I/O-time-per-process graph if proc_tree.taskstats and options.cumulative: cuml_rect = (off_x, curr_y + off_y * 100, w, CUML_HEIGHT/2 - off_y * 2) if clip_visible (clip, cuml_rect): draw_cuml_graph(ctx, proc_tree, cuml_rect, duration, sec_w, STAT_TYPE_IO) def draw_process_bar_chart(ctx, clip, options, proc_tree, times, curr_y, w, h, sec_w): header_size = 0 if not options.kernel_only: draw_legend_box (ctx, "Running (%cpu)", PROC_COLOR_R, off_x , curr_y + 45, leg_s) draw_legend_box (ctx, "Unint.sleep (I/O)", PROC_COLOR_D, off_x+120, curr_y + 45, leg_s) draw_legend_box (ctx, "Sleeping", PROC_COLOR_S, off_x+240, curr_y + 45, leg_s) draw_legend_box (ctx, "Zombie", PROC_COLOR_Z, off_x+360, curr_y + 45, leg_s) header_size = 45 chart_rect = [off_x, curr_y + header_size + 15, w, h - 2 * off_y - (curr_y + header_size + 15) + proc_h] ctx.set_font_size (PROC_TEXT_FONT_SIZE) draw_box_ticks (ctx, chart_rect, sec_w) if sec_w > 100: nsec = 1 else: nsec = 5 draw_sec_labels (ctx, options, chart_rect, sec_w, nsec) draw_annotations (ctx, proc_tree, times, chart_rect) y = curr_y + 60 for root in proc_tree.process_tree: draw_processes_recursively(ctx, root, proc_tree, y, proc_h, chart_rect, clip) y = y + proc_h * proc_tree.num_nodes([root]) def draw_header (ctx, headers, duration): toshow = [ ('system.uname', 'uname', lambda s: s), ('system.release', 'release', lambda s: s), ('system.cpu', 'CPU', lambda s: re.sub('model name\s*:\s*', '', s, 1)), ('system.kernel.options', 'kernel options', lambda s: s), ] header_y = ctx.font_extents()[2] + 10 ctx.set_font_size(TITLE_FONT_SIZE) draw_text(ctx, headers['title'], TEXT_COLOR, off_x, header_y) ctx.set_font_size(TEXT_FONT_SIZE) for (headerkey, headertitle, mangle) in toshow: header_y += ctx.font_extents()[2] if headerkey in headers: value = headers.get(headerkey) else: value = "" txt = headertitle + ': ' + mangle(value) draw_text(ctx, txt, TEXT_COLOR, off_x, header_y) dur = duration / 100.0 txt = 'time : %02d:%05.2f' % (math.floor(dur/60), dur - 60 * math.floor(dur/60)) if headers.get('system.maxpid') is not None: txt = txt + ' max pid: %s' % (headers.get('system.maxpid')) header_y += ctx.font_extents()[2] draw_text (ctx, txt, TEXT_COLOR, off_x, header_y) return header_y def draw_processes_recursively(ctx, proc, proc_tree, y, proc_h, rect, clip) : x = rect[0] + ((proc.start_time - proc_tree.start_time) * rect[2] / proc_tree.duration) w = ((proc.duration) * rect[2] / proc_tree.duration) draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip) draw_rect(ctx, PROC_BORDER_COLOR, (x, y, w, proc_h)) ipid = int(proc.pid) if not OPTIONS.show_all: cmdString = proc.cmd else: cmdString = '' if (OPTIONS.show_pid or OPTIONS.show_all) and ipid is not 0: cmdString = cmdString + " [" + str(ipid // 1000) + "]" if OPTIONS.show_all: if proc.args: cmdString = cmdString + " '" + "' '".join(proc.args) + "'" else: cmdString = cmdString + " " + proc.exe draw_label_in_box(ctx, PROC_TEXT_COLOR, cmdString, x, y + proc_h - 4, w, rect[0] + rect[2]) next_y = y + proc_h for child in proc.child_list: if next_y > clip[1] + clip[3]: break child_x, child_y = draw_processes_recursively(ctx, child, proc_tree, next_y, proc_h, rect, clip) draw_process_connecting_lines(ctx, x, y, child_x, child_y, proc_h) next_y = next_y + proc_h * proc_tree.num_nodes([child]) return x, y def draw_process_activity_colors(ctx, proc, proc_tree, x, y, w, proc_h, rect, clip): if y > clip[1] + clip[3] or y + proc_h + 2 < clip[1]: return draw_fill_rect(ctx, PROC_COLOR_S, (x, y, w, proc_h)) last_tx = -1 for sample in proc.samples : tx = rect[0] + round(((sample.time - proc_tree.start_time) * rect[2] / proc_tree.duration)) # samples are sorted chronologically if tx < clip[0]: continue if tx > clip[0] + clip[2]: break tw = round(proc_tree.sample_period * rect[2] / float(proc_tree.duration)) if last_tx != -1 and abs(last_tx - tx) <= tw: tw -= last_tx - tx tx = last_tx tw = max (tw, 1) # nice to see at least something last_tx = tx + tw state = get_proc_state( sample.state ) color = STATE_COLORS[state] if state == STATE_RUNNING: alpha = min (sample.cpu_sample.user + sample.cpu_sample.sys, 1.0) color = tuple(list(PROC_COLOR_R[0:3]) + [alpha]) # print "render time %d [ tx %d tw %d ], sample state %s color %s alpha %g" % (sample.time, tx, tw, state, color, alpha) elif state == STATE_SLEEPING: continue draw_fill_rect(ctx, color, (tx, y, tw, proc_h)) def draw_process_connecting_lines(ctx, px, py, x, y, proc_h): ctx.set_source_rgba(*DEP_COLOR) ctx.set_dash([2, 2]) if abs(px - x) < 3: dep_off_x = 3 dep_off_y = proc_h / 4 ctx.move_to(x, y + proc_h / 2) ctx.line_to(px - dep_off_x, y + proc_h / 2) ctx.line_to(px - dep_off_x, py - dep_off_y) ctx.line_to(px, py - dep_off_y) else: ctx.move_to(x, y + proc_h / 2) ctx.line_to(px, y + proc_h / 2) ctx.line_to(px, py) ctx.stroke() ctx.set_dash([]) # elide the bootchart collector - it is quite distorting def elide_bootchart(proc): return proc.cmd == 'bootchartd' or proc.cmd == 'bootchart-colle' class CumlSample: def __init__(self, proc): self.cmd = proc.cmd self.samples = [] self.merge_samples (proc) self.color = None def merge_samples(self, proc): self.samples.extend (proc.samples) self.samples.sort (key = lambda p: p.time) def next(self): global palette_idx palette_idx += HSV_STEP return palette_idx def get_color(self): if self.color is None: i = self.next() % HSV_MAX_MOD h = 0.0 if i is not 0: h = (1.0 * i) / HSV_MAX_MOD s = 0.5 v = 1.0 c = colorsys.hsv_to_rgb (h, s, v) self.color = (c[0], c[1], c[2], 1.0) return self.color def draw_cuml_graph(ctx, proc_tree, chart_bounds, duration, sec_w, stat_type): global palette_idx palette_idx = 0 time_hash = {} total_time = 0.0 m_proc_list = {} if stat_type is STAT_TYPE_CPU: sample_value = 'cpu' else: sample_value = 'io' for proc in proc_tree.process_list: if elide_bootchart(proc): continue for sample in proc.samples: total_time += getattr(sample.cpu_sample, sample_value) if not sample.time in time_hash: time_hash[sample.time] = 1 # merge pids with the same cmd if not proc.cmd in m_proc_list: m_proc_list[proc.cmd] = CumlSample (proc) continue s = m_proc_list[proc.cmd] s.merge_samples (proc) # all the sample times times = sorted(time_hash) if len (times) < 2: print("degenerate boot chart") return pix_per_ns = chart_bounds[3] / total_time # print "total time: %g pix-per-ns %g" % (total_time, pix_per_ns) # FIXME: we have duplicates in the process list too [!] - why !? # Render bottom up, left to right below = {} for time in times: below[time] = chart_bounds[1] + chart_bounds[3] # same colors each time we render random.seed (0) ctx.set_line_width(1) legends = [] labels = [] # render each pid in order for cs in m_proc_list.values(): row = {} cuml = 0.0 # print "pid : %s -> %g samples %d" % (proc.cmd, cuml, len (cs.samples)) for sample in cs.samples: cuml += getattr(sample.cpu_sample, sample_value) row[sample.time] = cuml process_total_time = cuml # hide really tiny processes if cuml * pix_per_ns <= 2: continue last_time = times[0] y = last_below = below[last_time] last_cuml = cuml = 0.0 ctx.set_source_rgba(*cs.get_color()) for time in times: render_seg = False # did the underlying trend increase ? if below[time] != last_below: last_below = below[last_time] last_cuml = cuml render_seg = True # did we move up a pixel increase ? if time in row: nc = round (row[time] * pix_per_ns) if nc != cuml: last_cuml = cuml cuml = nc render_seg = True # if last_cuml > cuml: # assert fail ... - un-sorted process samples # draw the trailing rectangle from the last time to # before now, at the height of the last segment. if render_seg: w = math.ceil ((time - last_time) * chart_bounds[2] / proc_tree.duration) + 1 x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration) ctx.rectangle (x, below[last_time] - last_cuml, w, last_cuml) ctx.fill() # ctx.stroke() last_time = time y = below [time] - cuml row[time] = y # render the last segment x = chart_bounds[0] + round((last_time - proc_tree.start_time) * chart_bounds[2] / proc_tree.duration) y = below[last_time] - cuml ctx.rectangle (x, y, chart_bounds[2] - x, cuml) ctx.fill() # ctx.stroke() # render legend if it will fit if cuml > 8: label = cs.cmd extnts = ctx.text_extents(label) label_w = extnts[2] label_h = extnts[3] # print "Text extents %g by %g" % (label_w, label_h) labels.append((label, chart_bounds[0] + chart_bounds[2] - label_w - off_x * 2, y + (cuml + label_h) / 2)) if cs in legends: print("ARGH - duplicate process in list !") legends.append ((cs, process_total_time)) below = row # render grid-lines over the top draw_box_ticks(ctx, chart_bounds, sec_w) # render labels for l in labels: draw_text(ctx, l[0], TEXT_COLOR, l[1], l[2]) # Render legends font_height = 20 label_width = 300 LEGENDS_PER_COL = 15 LEGENDS_TOTAL = 45 ctx.set_font_size (TITLE_FONT_SIZE) dur_secs = duration / 100 cpu_secs = total_time / 1000000000 # misleading - with multiple CPUs ... # idle = ((dur_secs - cpu_secs) / dur_secs) * 100.0 if stat_type is STAT_TYPE_CPU: label = "Cumulative CPU usage, by process; total CPU: " \ " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs) else: label = "Cumulative I/O usage, by process; total I/O: " \ " %.5g(s) time: %.3g(s)" % (cpu_secs, dur_secs) draw_text(ctx, label, TEXT_COLOR, chart_bounds[0] + off_x, chart_bounds[1] + font_height) i = 0 legends = sorted(legends, key=itemgetter(1), reverse=True) ctx.set_font_size(TEXT_FONT_SIZE) for t in legends: cs = t[0] time = t[1] x = chart_bounds[0] + off_x + int (i/LEGENDS_PER_COL) * label_width y = chart_bounds[1] + font_height * ((i % LEGENDS_PER_COL) + 2) str = "%s - %.0f(ms) (%2.2f%%)" % (cs.cmd, time/1000000, (time/total_time) * 100.0) draw_legend_box(ctx, str, cs.color, x, y, leg_s) i = i + 1 if i >= LEGENDS_TOTAL: break